Logo-ps
Pharm Sci. 2017;23(3): 198-206. doi: 10.15171/PS.2017.30

Research Article

Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design

Mojtaba Taran 1, Maryam Rad 1, Mehran Alavi 1 *

Cited by CrossRef: 60


1- İnce S, Yalçın M, İnce T, Geçgel C, Yılmaz M. Green Synthesis of CuO Nanoparticles UsingAgaricus bisporusExtract as a Highly Efficient Catalyst for the Suzuki Cross‐Coupling Reaction. Chemistry & Biodiversity. 2023;20(12) [Crossref]
2- Bogas A, Henrique Rodrigues S, Gonçalves M, De Assis M, Longo E, Paiva De Sousa C. Endophytic Microorganisms From the Tropics as Biofactories for the Synthesis of Metal-Based Nanoparticles: Healthcare Applications. Front Nanotechnol. 2022;4 [Crossref]
3- P J, Shanmugam V, Jas J, Jayakodi S. Biomimetic Copper Oxide Nanoparticles and its Validation Through In-silico Approach on Cardiac Enzymes. CNANO. 2022;18(1):86 [Crossref]
4- Alavi M, Moradi M. Different antibacterial and photocatalyst functions for herbal and bacterial synthesized silver and copper/copper oxide nanoparticles/nanocomposites: A review. Inorganic Chemistry Communications. 2022;142:109590 [Crossref]
5- Dolati M, Tafvizi F, Salehipour M, Komeili Movahed T, Jafari P. Biogenic copper oxide nanoparticles from Bacillus coagulans induced reactive oxygen species generation and apoptotic and anti-metastatic activities in breast cancer cells. Sci Rep. 2023;13(1) [Crossref]
6- Villapún V, Tardío S, Cumpson P, Burgess J, Dover L, González S. Antimicrobial properties of Cu-based bulk metallic glass composites after surface modification. Surface and Coatings Technology. 2019;372:111 [Crossref]
7- Gallo G, Schillaci D. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. Appl Microbiol Biotechnol. 2021;105(13):5357 [Crossref]
8- Pawar S, Patil S, Sonawane K, More V, Patil P. Hydrothermally synthesized copper oxide nanoparticles: Rietveld analysis and antimicrobial studies. Surfaces and Interfaces. 2024;51:104598 [Crossref]
9- Nastulyavichus A, Khaertdinova L, Tolordava E, Yushina Y, Ionin A, Semenova A, Kudryashov S. Additive Nanosecond Laser-Induced Forward Transfer of High Antibacterial Metal Nanoparticle Dose onto Foodborne Bacterial Biofilms. Micromachines. 2022;13(12):2170 [Crossref]
10- Singh A, Gautam A, Chauhan N, Dureja V, Kaushik S, Kashyap S, Verma S, Dabral H, Goswami A, Singh S, Kushwaha H. A simple and cost-effective synthesis of graphene oxide stabilized glucose-capped copper oxide nanoparticles and its antibacterial properties. Journal of Materials Research. 2023;38(16):3980 [Crossref]
11- Khaledizade E, Tafvizi F, Jafari P. Anti-breast cancer activity of biosynthesized selenium nanoparticles using Bacillus coagulans supernatant. Journal of Trace Elements in Medicine and Biology. 2024;82:127357 [Crossref]
12- Salah N, Alfawzan A, Allafi W, Baghdadi N, Saeed A, Alshahrie A, Al-Shawafi W, Memic A. Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polym Bull. 2021;78(1):261 [Crossref]
13- Muñoz-Escobar A, Ruíz-Baltazar Á, Reyes-López S. Novel Route of Synthesis of PCL-CuONPs Composites With Antimicrobial Properties. Dose-Response. 2019;17(3):155932581986950 [Crossref]
14- Al-Qaissi A, Fouzi S, Al-Baytay A. Mycosynthesis of Copper Nanoparticles by Aspergillus spp. Isolated from the Tomato Rhizosphere and Evaluating their Inhibition Efficacy on the Pathogenic Fungus Fusarium oxysporum . IOP Conf Ser: Earth Environ Sci. 2023;1214(1):012010 [Crossref]
15- Amin F, Amin F, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R, Hu W. Green Synthesis of Copper Oxide Nanoparticles Using Aerva javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. Evidence-Based Complementary and Alternative Medicine. 2021;2021:1 [Crossref]
16- Alavi M, Karimi N. Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. International Journal of Biological Macromolecules. 2020;152:1174 [Crossref]
17- Sarfraz M, Muzammil S, Hayat S, Khurshid M, Sayyid A. Fabrication of chitosan and Trianthema portulacastrum mediated copper oxide nanoparticles: Antimicrobial potential against MDR bacteria and biological efficacy for antioxidant, antidiabetic and photocatalytic activities. International Journal of Biological Macromolecules. 2023;242:124954 [Crossref]
18- A, Thakur N, Kumar K, Sharma K. Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorganic and Nano-Metal Chemistry. 2020;50(10):933 [Crossref]
19- Alkayal N, Al Ghamdi M. Cross-Linked Poly(methyl methacrylate) Nanocomposites’ Synthesis, Characterization, and Antibacterial Effects. Polymers. 2025;17(3):269 [Crossref]
20- Alavi M, Rai M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol. 2019;103(21-22):8669 [Crossref]
21- Kimta N, Chauhan A, Puri S, Kumari A, Sharma R, Kumar A, Kapoor D. Phytomediated Copper Oxide Nanoparticles Derived from the Fronds of Adiantum venustum D.Don: Evaluation of their Biomedical Potential. Appl Biochem Biotechnol. 2025;197(1):398 [Crossref]
22- Fernandes J, Kalluri S, Alsuwaidi M, Mayakrishnan V, Mohan C, Madhavan A. Band gap engineering of g-C3N4/CuS and its application in Solar Still. Chemical Physics Impact. 2024;9:100684 [Crossref]
23- Fatoni A, Paramita A, Untari B, Hidayati N. Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and In Vitro Study. J Kim Sains Apl. 2021;23(12):432 [Crossref]
24- H R R, M S S, S P, Ravikumara C, H P N, N D. Costus Pictus leaf extract mediated biosynthesis of Fe and Mg doped CuO nanoparticles: structural, electrochemical and antibacterial analysis. Mater Res Express. 2019;6(11):1150e5 [Crossref]
25- Maťátková O, Michailidu J, Miškovská A, Kolouchová I, Masák J, Čejková A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnology Advances. 2022;58:107905 [Crossref]
26- Sharma R, Dey G, Banerjee P, Maity J, Lu C, Siddique J, Wang S, Chatterjee N, Das K, Chen C. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B. 2023;11(1):10 [Crossref]
27- Ahmad Wani S, Venkatesh R, Ahmadi Khatoon B, Khanum F. Synthesis And Characterisation of Copper Nanoparticles Using Aqueous Leaf Extract of Lagerstreomia Speciose and Their Biological, Antioxidant and catalytic activities. PB. 2023;1(1):37 [Crossref]
28- Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol. 2021;19(1) [Crossref]
29- Kumar M, Suresh D, Sneharani A. Environmentally benign preparation of copper oxide nanoparticles and its potential biological and photocatalytic activities. Journal of Dispersion Science and Technology. 2024;:1 [Crossref]
30- Pandas H, Fazli M. Preparation and Application of La2O3 and CuO Nano Particles as Catalysts for Ammonium Perchlorate Thermal Decomposition. Propellants Explo Pyrotec. 2018;43(11):1096 [Crossref]
31- Saberi D, Mansourinejhad S, Shadi A, Habibi H. One-pot synthesis of a highly disperse core–shell CuO–alginate nanocomposite and the investigation of its antibacterial and catalytic properties. New J Chem. 2022;46(1):199 [Crossref]
32- Manasa D, Chandrashekar K, Madhu Kumar D, Niranjana M, Navada K. Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arabian Journal of Chemistry. 2021;14(6):103184 [Crossref]
33- Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers. 2020;227:115349 [Crossref]
34- Sambangi P, Gopalakrishnan S, Pebam M, Rengan A. Nano-biofertilizers on soil health, chemistry, and microbial community: benefits and risks. ProcIndian Natl Sci Acad. 2022;88(3):357 [Crossref]
35- Mukherjee D, Sil M, Bhattacharya D, Lahiri D, Goswami A, Nag M. Green-Synthesized Nanoparticles: An Alternative to Conventional Nanoparticles to Treat microbial Biofilm. BioNanoSci. 2025;15(1) [Crossref]
36- Meena M, Zehra A, Swapnil P, Swapnil H, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem. 2021;9 [Crossref]
37- Khoerunnisa F, Nurhayati M, Herlini H, Adzkia Q, Dara F, Hendrawan H, Oh W, Lim J. Design and application of chitosan-CuO nanocomposites synthesized via novel hybrid ionic gelation-ultrasonication methods for water disinfection. Journal of Water Process Engineering. 2023;52:103556 [Crossref]
38- Mallakpour S, Azadi E, Mustansar Hussain C. Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coordination Chemistry Reviews. 2020;419:213378 [Crossref]
39- Ghdeeb N, Abdalameer N. Synthesis, characterization, and antimicrobial activity of CuO nanoparticles and CuO/Ag nanocomposites. Appl Nanosci. 2024;14(2):401 [Crossref]
40- Ghareib M, Abu Tahon M, Abdallah W, Hussein M. Free radical scavenging activity of zinc oxide nanoparticles biosynthesised using Aspergillus carneus . Micro & Nano Letters. 2019;14(11):1157 [Crossref]
41- Saikia T, Iraqui S, Khan A, Rashid M. Sapindus mukorossi seed shell extract mediated green synthesis of CuO nanostructures: an efficient catalyst for C–N bond-forming reactions. Mater Adv. 2022;3(2):1115 [Crossref]
42- Masri A, Brown D, Smith D, Stone V, Johnston H. Comparison of In Vitro Approaches to Assess the Antibacterial Effects of Nanomaterials. JFB. 2022;13(4):255 [Crossref]
43- Shkodenko L, Kassirov I, Koshel E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms. 2020;8(10):1545 [Crossref]
44- Hafeez M, Arshad R, Khan J, Akram B, Ahmad M, Hameed M, Haq S. Populus ciliata mediated synthesis of copper oxide nanoparticles for potential biological applications. Mater Res Express. 2019;6(5):055043 [Crossref]
45- Alavi M, Jabari E, Jabbari E. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-infective Therapy. 2021;19(1):35 [Crossref]
46- Liu X, Meng H. Consideration for the scale‐up manufacture of nanotherapeutics—A critical step for technology transfer. VIEW. 2021;2(5) [Crossref]
47- Yazar S. Construction of enriched CuO/Cu2O electrode materials with discrete heteroatom-doped graphene oxide and investigation of capacitance performance for symmetrical supercapacitor application. Chem Pap. 2023;77(9):5259 [Crossref]
48- Gebreslassie Y, Gebremeskel F. Green and cost-effective biofabrication of copper oxide nanoparticles: Exploring antimicrobial and anticancer applications. Biotechnology Reports. 2024;41:e00828 [Crossref]
49- Murugan S, Senthilvelan T, Govindasamy M, Thangavel K. A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria. Curr Microbiol. 2025;82(2) [Crossref]
50- Kouhkan M, Ahangar P, Babaganjeh L, Allahyari-Devin M. Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp. Casei and its Anticancer and Antibacterial Activities. CNANO. 2020;16(1):101 [Crossref]
51- Aziz W, Abid M, Hussein E. Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Materials Technology. 2020;35(8):447 [Crossref]