Logo-ps
Pharm Sci. 2017;23(3): 198-206. doi: 10.15171/PS.2017.30

Research Article

Antibacterial Activity of Copper Oxide (CuO) Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design

Mojtaba Taran 1, Maryam Rad 1, Mehran Alavi 1 *

Cited by CrossRef: 27


1- Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnol. 2021;19(1) [Crossref]
2- Villapún V, Tardío S, Cumpson P, Burgess J, Dover L, González S. Antimicrobial properties of Cu-based bulk metallic glass composites after surface modification. Surface and Coatings Technology. 2019;372:111 [Crossref]
3- Gallo G, Schillaci D. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. Appl Microbiol Biotechnol. 2021;105(13):5357 [Crossref]
4- Saberi D, Mansourinejhad S, Shadi A, Habibi H. One-pot synthesis of a highly disperse core–shell CuO–alginate nanocomposite and the investigation of its antibacterial and catalytic properties. New J Chem. 2022;46(1):199 [Crossref]
5- Manasa D, Chandrashekar K, Madhu Kumar D, Niranjana M, Navada K. Mussaenda frondosa L. mediated facile green synthesis of Copper oxide nanoparticles – Characterization, photocatalytic and their biological investigations. Arabian Journal of Chemistry. 2021;14(6):103184 [Crossref]
6- Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers. 2020;227:115349 [Crossref]
7- Salah N, Alfawzan A, Allafi W, Baghdadi N, Saeed A, Alshahrie A, Al-Shawafi W, Memic A. Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polym Bull. 2021;78(1):261 [Crossref]
8- Meena M, Zehra A, Swapnil P, Swapnil H, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem. 2021;9 [Crossref]
9- Muñoz-Escobar A, Ruíz-Baltazar Á, Reyes-López S. Novel Route of Synthesis of PCL-CuONPs Composites With Antimicrobial Properties. Dose-Response. 2019;17(3):155932581986950 [Crossref]
10- Mallakpour S, Azadi E, Mustansar Hussain C. Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coordination Chemistry Reviews. 2020;419:213378 [Crossref]
11- Amin F, Amin F, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R, Hu W. Green Synthesis of Copper Oxide Nanoparticles Using Aerva javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. Evidence-Based Complementary and Alternative Medicine. 2021;2021:1 [Crossref]
12- Alavi M, Karimi N. Hemoglobin self-assembly and antibacterial activities of bio-modified Ag-MgO nanocomposites by different concentrations of Artemisia haussknechtii and Protoparmeliopsis muralis extracts. International Journal of Biological Macromolecules. 2020;152:1174 [Crossref]
13- Ghareib M, Abu Tahon M, Abdallah W, Hussein M. Free radical scavenging activity of zinc oxide nanoparticles biosynthesised using Aspergillus carneus . Micro & Nano Letters. 2019;14(11):1157 [Crossref]
14- A, Thakur N, Kumar K, Sharma K. Application of Co-doped copper oxide nanoparticles against different multidrug resistance bacteria. Inorganic and Nano-Metal Chemistry. 2020;50(10):933 [Crossref]
15- Alavi M, Rai M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl Microbiol Biotechnol. 2019;103(21-22):8669 [Crossref]
16- Saikia T, Iraqui S, Khan A, Rashid M. Sapindus mukorossi seed shell extract mediated green synthesis of CuO nanostructures: an efficient catalyst for C–N bond-forming reactions. Mater Adv. 2022; [Crossref]
17- Shkodenko L, Kassirov I, Koshel E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms. 2020;8(10):1545 [Crossref]
18- Fatoni A, Paramita A, Untari B, Hidayati N. Chitosan-CuO Nanoparticles as Antibacterial Shigella dysenteriae: Synthesis, Characterization, and In Vitro Study. J Kim Sains Apl. 2021;23(12):432 [Crossref]
19- Hafeez M, Arshad R, Khan J, Akram B, Ahmad M, Hameed M, Haq S. Populus ciliata mediated synthesis of copper oxide nanoparticles for potential biological applications. Mater Res Express. 2019;6(5):055043 [Crossref]
20- H R R, M S S, S P, Ravikumara C, H P N, N D. Costus Pictus leaf extract mediated biosynthesis of Fe and Mg doped CuO nanoparticles: structural, electrochemical and antibacterial analysis. Mater Res Express. 2019;6(11):1150e5 [Crossref]
21- Alavi M, Jabari E, Jabbari E. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-infective Therapy. 2021;19(1):35 [Crossref]
22- Liu X, Meng H. Consideration for the scale‐up manufacture of nanotherapeutics—A critical step for technology transfer. VIEW. 2021;2(5):20200190 [Crossref]
23- Kouhkan M, Ahangar P, Babaganjeh L, Allahyari-Devin M. Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp. Casei and its Anticancer and Antibacterial Activities. CNANO. 2020;16(1):101 [Crossref]
24- Aziz W, Abid M, Hussein E. Biosynthesis of CuO nanoparticles and synergistic antibacterial activity using mint leaf extract. Materials Technology. 2019;:1 [Crossref]