Logo-ps
Pharm Sci. 2021;27(Suppl 1): S135-S148.
doi: 10.34172/PS.2021.11

Scopus ID: 85117415904
  Abstract View: 1651
  PDF Download: 892

COVID-19

Research Article

Natural Products as Inhibitors of COVID-19 Main Protease – A Virtual Screening by Molecular Docking

Marzieh Omrani 1, Mohammad Bayati 1, Parvaneh Mehrbod 2* ORCID logo, Kamal Asmari Bardazard 1, Samad Nejad-Ebrahimi 1* ORCID logo

1 Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran..
2 Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran.
*Corresponding Authors: Email: mehrbode@yahoo.com; Email: s_ebrahimi@sbu.ac.ir

Abstract

Background: The novel coronavirus (2019-nCoV) causes a severe respiratory illness unknown to a human before. Its alarmingly quick transmission to many countries across the world has resulted in a global health emergency. Therefore, an imminent need for drugs to combat this disease has been increased. Worldwide collaborative efforts from scientists are underway to determine a therapy to treat COVID-19 infections and reduce mortality rates. Since herbal medicines and purified natural products have been reported to have antiviral activity against Coronaviruses (CoVs), this in silico evaluation was performed for identifying potential natural compounds with promising inhibitory activities against COVID-19.

Methods: In this study, a High Throughput Virtual Screening (HTVS) protocol was used asa fast method for discovering novel drug candidates as potential COVID-19 main protease(Mpro) inhibitors. Over 180,000 natural product-based compounds were obtained from the ZINCdatabase and virtually screened against the COVID-19 Mpro. In this study, the Glide docking program was applied for high throughput virtual screening. Also, Extra precision (XP) has been used following the induced-fit docking (IFD) approach. The ADME properties of all compounds were analyzed and a final selection was made based on the Lipinski rule of five. Also, molecular dynamics (MD) simulations were conducted for a virtual complex of the best scoring compound with COVID-19 protease.

Results: Nineteen compounds were introduced as new potential inhibitors. CompoundZINC08765174 (1-[3-(1H-indol-3-yl) propanoyl]-N-(4-phenylbutan-2-yl)piperidine-3-carboxamideshowed a strong binding affinity (-11.5 kcal/mol) to the COVID-19 Mpro comparing to peramivir (-9.8 kcal/mol) as a positive control.

Conclusion: Based on these findings, nineteen compounds were proposed as possible new COVID-19 inhibitors, of which ZINC08765174 had a high affinity to Mpro. Furthermore, the promising ADME properties of the selected compounds emphasize their potential as attractive candidates for the treatments of COVID-19.

First Name
Last Name
Email Address
Comments
Security code


Abstract View: 1649

Your browser does not support the canvas element.


PDF Download: 892

Your browser does not support the canvas element.

Submitted: 04 Oct 2020
Revision: 17 Feb 2021
Accepted: 25 Feb 2021
ePublished: 03 Mar 2021
EndNote EndNote

(Enw Format - Win & Mac)

BibTeX BibTeX

(Bib Format - Win & Mac)

Bookends Bookends

(Ris Format - Mac only)

EasyBib EasyBib

(Ris Format - Win & Mac)

Medlars Medlars

(Txt Format - Win & Mac)

Mendeley Web Mendeley Web
Mendeley Mendeley

(Ris Format - Win & Mac)

Papers Papers

(Ris Format - Win & Mac)

ProCite ProCite

(Ris Format - Win & Mac)

Reference Manager Reference Manager

(Ris Format - Win only)

Refworks Refworks

(Refworks Format - Win & Mac)

Zotero Zotero

(Ris Format - Firefox Plugin)