Supplementary Data

Optimization and enhancement of Oral Bioavailability of Dabrafenib as Nanobubbles using quality by design approach

Bijili Vijaya Laxmi¹, Darna Bhikshapathi^{2,3*}, Penakalapati Sailaja Rao³

¹Research Scholar, Bir Tikendrajit University, Canchipur, Imphal West-795003, Manipur, India.

²Research Supervisor, Bir Tikendrajit University, Canchipur, Imphal West-795003, Manipur, India.

³Teegala Ram Reddy College of Pharmacy, Meerpet-500097, Hyderabad, India.

QTPP	Target	Justification							
Formulation	Nanobubble	The selected formulation strategy facilitates targeted drug distribution to the intended site of action while improving half-life, stability, and bioavailability.							
Route of administration	Oral	The available formulation in the market is oral; hence, we are attempting to increase the half- life and bioavailability.							
In vitro release	More significant as compared to PD (Plain drug)	Decreased size can improve the rate of drug release.							
Stability	Up to thirty days following formulation, no outward indications of aggregation or cake formation	Because particle size affects this formulation's efficiency, it is critical to keep it constant.							
CQAs									
CQA	Target	Justification							
Particle size	In Nano-range	Reducing the size of the nanoscale increases surface area, which boosts release and distribution to the site.							
PDI	Less than 0.4	PDI values larger than 0.4 are hetero-disperse, meaning they have a wider distribution and are inappropriate for DLS particle size assessment.							
EE	High	Higher E.E helps to release the drug at the site							

Table S1: Selection of QTPP and CQAs and justification

Solutio	Predict	Predict	Observ	Std Dev	n	SE	95%	Data	95%
n 1 of	ed	ed	ed			Pred	PI low	Mean	PI
33	Mean	Median							high
Respon									
se									
Particl	207.79	207.79	$190.6~\pm$	2.19898	1.90159	202.90	212.6	192.12	223.45
e size			18.4			1	78	4	5
PDI	0.30099	0.30099	$0.397~\pm$	0.02410	0.02084	0.2474	0.3545	0.1292	0.4727
	9	9	0.096	39	39	19	8	81	18
EE	89.329	89.329	$87.21 \pm$	0.98262	0.84973	87.145	91.51	82.329	96.330
	9	9	3.8	7	3	6	42	6	3

 Table S2 Design confirmation and validation results

Supplementary Figures

Figure S1: Cellular images with a fluorescence A) Control; B) Standard; C) Test

Figure S2: Preparation of Dabrafenib Nanobubbles (DBF - NBs) Formulation by Solvent Evaporation method