Supplementary Data

Development of a Nanocluster-Based Platform for Determination of Sofosbuvir

Zahra Karimzadeh ^{1,2}, Abolghasem Jouyban ^{1,3}, Elaheh Rahimpour ^{1,4,1}

¹ Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

² Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

³ Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

⁴Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

¹ Corresponding author. E-mail: rahimpour_e@yahoo.com

• Optimization of reaction conditions by experimental design

۲ In order to optimize the reaction conditions, a CCD with four independent parameters was ٣ used. The coded and corresponding uncoded values are given in Table 1S. This experimental design includes 27 experiments (N= $2^{k} + 2k + n_{o}$), in which 'k' is the number of independent ٤ variables and n₀ is the number of replication at the center point of the individual variables. Table ٥ ٦ 2S summarized the 4-factor CCD matrix and the obtained experimental results. After running the ۷ 27 experiments, the data obtained from the CCD was regressed by using response surface method. ٨ The obtained data were correlated by the following second-order polynomial model: ٩ $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + b_{12} X_{12} + b_{13} X_{13} + b_{14} X_{14} + b_{23} X_{23} + b_{24} X_{24} + b_{34} X_{34} + b_{14} X_{14} + b_{23} X_{23} + b_{24} X_{24} + b_{34} X_{34} + b_{34} X_{$ ۱. $b_{11}X_1^2 + b_{22}X_2^2 + b_{33}X_3^2 + b_{44}X_4^2$ (1) ۱۱ In which, Y is the measured response, b_0 is the intercept, X_i is the levels of independent variables, ۱۲ b_1-b_4 are the linear coefficients, $b_{12}-b_{34}$ show the interaction of investigated factors and $b_{11}-b_{44}$ ۱۳ are the quadratic coefficients. The trained second-order polynomial equation in uncoded units by ١٤ response surface analysis is summarized as: $Y = -368.099 + 99.162 X_1 + 5708.804 X_2 + 9.459 X_3 - 8.411 X_1^2 - 0.108 X_3^2 - 0.401 X_4^2 + 1.400$ ۱٥ ١٦ $X_{14} - 276.190 X_{23} - 1.179 X_{24} - 0.031 X_{34}$ (2)١٧ Analysis of the residuals of the regression model and the obtained lack of fit test are given in Table ۱۸ 3S showing that the second-order polynomial model provide an adequate illustration of the surface ۱۹ over the studied region. As can be seen, the regression model show a high value of coefficient of

The measurement ($R^2 = 97.65\%$). This implies that 97.65% of the variations for *Y* are explained by the independent variables and this also means that the model does not explain only about 2.35% of variations.

۲٤ Table 1S

Yo Coded and actual values of independent variables of the experimental design

Variables	Ranges and levels					
	-2	-1	0	+1	+2	
pH (X ₁)	3.0	5.0	7.0	9.0	11.0	
[Buffer] (mol L^{-1}) (X_2)	0.001	0.0025	0.004	0.0055	0.007	
Cu NCs volume (μ L) (X ₃)	7.5	20.625	33.75	46.875	60.0	
Time (X ₄)	1	5.75	10.5	15.25	20.0	

۲٦

۲۳

Table 2S

Deve	v	v	V	V	Response		
Kuli	$\mathbf{\Lambda}_1$	Λ_2	Λ_3	Λ_4	Experimental	predicted	
1	-1	1	-1	-1	91	85	
2	0	0	-2	0	45	50	
3	1	-1	-1	-1	48	46	
4	0	0	0	-2	90	93	
5	1	1	1	-1	72	74	
6	1	-1	-1	1	86	81	
7	-1	-1	1	-1	121	119	
8	0	-2	0	0	*	163	
9	-2	0	0	0	19	24	
10	1	1	1	1	70	69	
11	0	0	2	0	89	88	
12	-1	1	1	-1	100	105	
13	1	1	-1	-1	48	54	
14	1	-1	1	-1	82	87	
15	-1	-1	-1	-1	70	77	
16	0	0	0	0	163	152	
17	1	1	-1	1	80	73	
18	-1	-1	1	1	101	100	
19	0	0	0	2	93	93	
20	-1	-1	-1	1	91	81	
21	1	-1	1	1	105	100	
22	-1	1	-1	1	76	73	
23	0	0	0	0	143	152	
24	2	0	0	0	-5	-6	
25	-1	1	1	1	80	69	
26	0	0	0	0	148	152	
27	0	2	0	0	*	142	

The 4-factor central composite design matrix and the value of response function

* These results are considered as outliers and are excluded for modeling calculations.

Table 3S

Source of variations	Sum of squares	Degrees of freedom	Adjusted mean square	F	Р
Model	32527.3	10	3252.7	58.14	0.000
Linear	4115.1	3	1371.7	24.52	0.000
А	1457	1	1457	26.04	0.000
В	473.1	1	473.1	8.46	0.011
С	2185	1	2185	39.06	0.000
Square	26117.9	3	8706	155.61	0.000
A*A	25020.3	1	25020.3	447.22	0.000
C*C	8475.3	1	8475.3	151.49	0.000
D*D	4233.3	1	4233.3	75.67	0.000
2-Way Interaction	2294.3	4	573.6	10.25	0.000
A*D	976.6	1	976.6	17.46	0.001
B*C	473.1	1	473.1	8.46	0.011
B*D	280.6	1	280.6	5.01	0.042
C*D	564.1	1	564.1	10.08	0.007
Error	783.2	14	55.9		
Lack-of-Fit	566.6	12	47.2	0.44	0.857
Pure Error	216.7	2	108.3		
Total	33310.6	24			

Analysis of variance (ANOVA) for the response surface quadratic model obtained from CCD

^a Not statistically significant (p>0.05). R²= 97.65%, Adj. R²= 95.97 %.