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Introduction

Abstract

Background: Aging is associated with a wide range of cognitive impairments that affect the
quality of life in the elderly. This study aimed to assess the neuroprotective properties of the
hydro-alcoholic extract of Melissa officinalis L. (HAEMO) on cognitive impairment mediated by
the D-galactose/AlCls-induced accelerated aging model.

Methods: The C57BL/6 mice were allocated into young and aged control groups, and three aged
groups received different doses of HAEMO for 60 days. The performance of mice was assessed
using the Lashley Ill maze and the novel object recognition test to assess cognitive function.
Hippocampal tissue was examined not only for oxidative stress indicators (TAC, MDA, GPx and
SOD) but also used for estimations of Sirt-1, Nrf2, NF-xB, IL-6, and TNF-a proteins.

Results: The results indicated improved spatial and recognition memories in the HAEMO-
received aged animals. The behavioral advantages were probably linked to diminished lipid
peroxidation, increased antioxidant enzyme activities, and enhancement of the hippocampal
Sirt-1/Nrf2 pathway. Moreover, the HAEMO regimen reduced inflammatory markers (NF-xB,
TNF-0, and IL-6) in the hippocampus.

Conclusion: HAEMO exerts a modulatory effect on the hippocampal Sirt-1/Nrf2/NF-xB pathway,
offering a neuroprotective approach against progressive oxidative stress and neuroinflammation
that develop with aging. Additional research is necessary to completely understand the
therapeutic potential of HAEMO in the preservation of cognition during aging.

have demonstrated that memory deficits resembling

Aging is an unavoidable biological phenomenon marked
by progressive deteriorations in physical and mental
capacities."” It remains a major risk factor for age-related
conditions such as neoplastic, neurological, and metabolic
disorders. These conditions often cause functional deficits
that impair daily life, putting physical, emotional, and
financial strain on family members and caregivers.’
Aging-induced cognitive deficits are multifactorial
and can be attributed to various events, including
inflammation, mitochondrial failure, oxidative stress, the
buildup of misfolded or aggregated molecules like amyloid
beta, synaptic dysfunction, and neuronal loss.* In aging,
the brain undergoes structural and functional changes,
specifically in areas responsible for cognitive processes,
such as the hippocampus and prefrontal cortex, which
negatively impact cognitive capacities.”® Several studies

normal aging are the result of a deteriorated antioxidant
system and increased oxidative stress and inflammatory
responses, while cognitive performance can be enhanced
by the overexpression of antioxidants.”?

High energy demands, impaired mitochondrial
function, and declined antioxidant enzyme effectiveness in
aging brains increase the amount of both reactive nitrogen
and oxygen species, which surpass the brain’s capacity to
efficiently eliminate these harmful active compounds.’*¢
Moreover, the progressive deposition of defective
biological molecules and cells in senescence may promote
microglial activation and subsequent neuroinflammatory
reactions.'” The nuclear factor erythroid 2-related factor 2
(Nrf2) protein, as a cellular sensor of oxidative stress, in
conjunction with sirtuin 1 (Sirt-1), forms the Nrf2/Sirt-1
pathway, a regulatory mechanism that contributes to the
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response to both oxidative stress and inflammation.'®"
Upon activation, Nrf2 traffics to the nucleus to enhance
the cellular antioxidant capacity, partly by regulating
the transcription of heme oxygenase 1 and superoxide
dismutase (SOD) genes.”

Sirt-1, an NAD*-dependent deacetylase, affects the
cellular redox balance by deacetylation of Nrf2, hence
enhancing its transcriptional activity.?**> Moreover,
Sirt-1 interacts with the nuclear factor kappa B (NF-kB)
and modifies its acetylation level, thereby inhibiting the
transcription of genes responsible for the regulation of
inflammatory cytokines.?** Evidence indicates that the
Sirt-1/Nrf2 pathway is negatively affected by aging, leading
to elevated oxidative stress and neuroinflammation, as well
as age-associated mitochondrial dysfunction, ultimately
contributing to diminished cognitive function.**%
Hence, promoting the activity of this pathway holds
great potential as a highly promising approach in the
management of cognitive deficits.

The toxicity mediated by the concomitant
administration of the aldohexose sugar D-galactose and
aluminum chloride (D-gal/AICl;) speeds up the aging
process, profoundly hinders learning and memory, and
serves as a valuable model for the investigation of potential
treatments for aging-associated memory deficits.**

Recently,  natural  products  with  potential
neuroprotective properties have attracted increasing
attention for the management of age-related conditions,
particularly those possessing both antioxidant and anti-
inflammatory capacities.’® Melissa officinalis L. has been
recognized as a routine remedy for more than 2,000 years,
primarily in herbal medicine literature for its therapeutic
benefits. Ancient figures like Theophrastus, Pliny the
Elder, and Hippocrates have endorsed its therapeutic
properties, valuing it as a beneficial herbal remedy.*> In
traditional Persian medicine, it is known as Badranjboya
and has been recommended by some famous traditional
Iranian physicians, including Avicenna (Ibn Sina), Razes,
and Aghili Khorasani, as a remedy for treating insults
affecting the central nervous system and peripheral organs
(i.e., depression, psychosis, obsession, and palpitation).”**
Consistent with historical evidence, recent studies have
also established that M. officinalis may have tranquilizing,
anti-anxiety, and cognitive-enhancing effects.’**

Basically, the capacity of M. officinalis extract to
enhance learning and memory is most likely due to the
synergistic effects of rosmarinic acid, phenolic acids,
flavonoids, and terpenoids. These chemicals collectively
improve neuronal survival and plasticity, modify
cholinergic neurotransmission, and decrease oxidative
stress and neuroinflammation.*®“° Preclinical research has
also shown that M. officinalis L. targets the hippocampal
Nrf2/HO-1 pathway to enhance neurotrophic factor and
reduce the burden of oxidative stress and inflammatory
reactions.*®*" In light of this, M. officinalis L. may have
great potential for developing therapeutic approaches
aimed at preserving cognitive function during the aging

process.

This study aimed to investigate whether the hydro-
alcoholic extract of M. officinalis L. (HAEMO) may
improve learning and memory function, as well as
the associated molecular pathways, in a D-gal/AlCI3-
mediated aging mouse model.

Methods

Animals and study design

A total of fifty C57BL/6 mice (Male, 26-28 g) were used
in this study. They were kept under standard conditions
(24+2 °C and a photoperiod of 12 hours of light per day)
with unrestricted access to tap water and conventional
rodent pellets. All of the experimental procedures were
conducted in accordance with the guidelines published
by the National Institutes of Health (No. 85-23, amended
1985) and received approval from the regional Committee
(Approval No. IR:-TBZMED.AEC.1402.008).

After acclimating to the laboratory setting for seven
days, the mice were allocated into five groups (n=10 in
each): I) Young control, IT) Aged control, III) Aged + M50,
IV) Aged + M75, and V) Aged + M150. A combination of
subcutaneous (s.c.) D-gal (60 mg/kg, Daejung Chemicals
& Metals Co., Ltd., Gyeonggi-do, Korea) and intragastric
gavage (p.o.) of AICI, (200 mg/kg, Sigma Chemical Co.,
St. Louis, USA) was administered once daily for 60
consecutive days in order to model an aging process. The
mice in group I (young control) received normal saline
instead of D-gal/AICl; for 60 successive days via the same
routes described for D-gal (s.c.) and AICl; (p.o.).

For treatment, the animals in groups I and II received
distilled water for 60 days and groups III-V received
the HAEMO regimen at doses of 50, 75, and 150 mg/
kg (Figure 1). All solutions were administered at the
constant volume of 0.2 ml/mice via gastric gavage.
Moreover, the extract was given 60 min before D-gal/
AICI, administration. The standardized HAEMO extract
(containing 5% rosmarinic acid), prepared from plant
material collected in Iran’s East Azerbaijan province
(herbarium number: Fph-Tbz 4031) and previously
standardized in our laboratory, was used as the treatment
in this study.”

Behavioral analysis

Behavioral assessments were conducted using a ceiling-
mounted camera for video recording, and subsequent
analysis was performed using a computer-assisted
tracking system (Noldus EthoVision® 11.5, Netherlands).
All experimental procedures were conducted by an
investigator who was unaware of the group allocations
and treatment conditions in order to reduce the potential
for bias.

Novel object recognition (NORT)

The three-phase NORT protocol, with each phase lasting
5 minutes, was conducted to assess the mice’s instinctive
proclivity for novelty. On day 1, during the habituation
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Figure 1. Timeline of study. M50, M75, and M150: 50, 75, and 150 mg/kg of hydro-alcoholic extract of Melissa officinalis. NORT: novel object recognition test

phase, the mice were gently located at the center of the
test apparatus without any objects and allowed to explore
the entire arena of the apparatus. The protocol continued
on the second day for familiarization, during which two
identical objects (Al and A2) were positioned 10 cm apart,
and the animals were allowed to freely explore the objects.
On the final day, the testing phase began by replacing one
of the familiar objects with a new one, and the mice were
allowed to explore the objects. Finally, the discrimination
index (DI) was obtained as below: DI=(T _ -T . )

(T +T ). T andT represent the time spent

novel familiar

exploring the novel and familiar objects, respectively.*

novel familiar

Lashley III Maze

A five-day protocol was used with a white Plexiglas  Lashley
III Maze. The maze comprises three main elements,
including four interconnected runways, a starting box, and
a goal box. The maze is covered with a transparent top lid
to prevent the rodent from escaping during the test. The
rodents were motivated by placing a food reward in the
goal box prior to each session. Subsequently, the animals
were placed inside the start box for nearly 10 seconds, after
which the partition door separating the start box from the
initial runway was raised, permitting the mice to traverse
and investigate the runways for 5 minutes. The latency to
access the goal box and the number of committed errors
were both recorded during this period. The mice were
manually guided toward the goal box if they were unable
to complete the assignment within 5 minutes, and their
latency was recorded as 5 minutes.*

Tissue sampling

Immediately after the cognitive tasks, the mice received an
intraperitoneal injection of a xylazine HCI and ketamine
HCI mixture (10 and 80 mg/kg, respectively). Sampling
was then performed following the recently introduced
technique for the rapid extraction of brain tissue, with
modifications made to adapt the method for use in mice.*
Then, the hippocampal samples were carefully isolated
and were cryopreserved at -80 “C for molecular analysis.

Oxidative stress markers
Once the supernatants of the specimens were obtained
following homogenization in a 1.15% KCI solution and
subsequent centrifugation (1,000 rpm for 10 minutes at
4°C), then the quantities of proteins were measured by
the Bradford assay kit (DB0017, DNAbioTech, Tehran,
Iran) and the samples were used for the following assays:
Malondialdehyde (MDA) levels, which serve as a

biomarker of lipid peroxidation, were analyzed using
the thiobarbituric acid reactive substances (TBARS) test.
The reaction between 2-thiobarbituric acid and MDA
produced a red-pink complex, which was quantified by
spectrophotometry at 532 nm.

The total antioxidant capacity (TAC) was assessed
by quantifying the sample’s capacity to convert ferric
ions (Fe*!) into ferrous ions (Fe?*). The reduction
procedure yields a blue complex formed by Fe*" and 2,
4, 6-Tri (2-pyridyl)-s-triazine. The complex was then
spectrophotometrically measured at 593 nm.

The commercial spectrophotometric kits, RANSEL and
RANSOD (both from Randox Laboratories Ltd., Crumlin,
United Kingdom), were employed to quantify the
enzymatic activity of glutathione Peroxidase (GPx) and
SOD at wavelengths of 340 nm and 505 nm, respectively.

Western blotting

RIPA buffer enhanced with a protease inhibitor cocktail
was employed to lyse frozen tissues. The prepared lysates
were centrifuged (12,000 g for 15 minutes at 4 'C) and the
quantities of proteins were estimated using the Bradford
assay kit (DB0017, DNAbioTech, Tehran, Iran) following
the directions supplied by the manufacturer. A 12.5%
polyacrylamide gel was used to run 20 ug of each sample
using SDS-PAGE, and then the protein was transferred
to a 0.2 ym PVDF membrane (Bio-Rad Immune-
BlotTM, Bio-Rad Laboratories, California, USA). Once
the blocking procedure was finished, the membranes
were then incubated (12 hours, at 4 'C) with primary
antibodies (including anti-Nrf2 [1:1000; Cat No. 127218,
Cell Signaling, Leiden, The Netherlands], anti-SIRT-1
[1:1000; Cat No. ab189494, Abcam, Massachusetts, USA],
anti-NF-kB-p65 [0.5 pug/ml; Cat No. ab16502, Abcam],
anti-pNF-xB-p65 [1:2000; Cat No. ab264271, Abcam],
anti-IL-6 [1:1000; Cat No. ab259341, Abcam], anti-
TNF-a [1:1000; Cat No. ab183218, Abcam], and anti-
B-actin [1:5000, Cat No. ab8227, Abcam] as an internal
reference control). Following three rounds of TBST (Tris
buffered saline + 0.1% Tween 20) washing, the membranes
were incubated for one hour at room temperature with
a secondary antibody conjugated with horseradish
peroxidase (goat anti-rabbit IgG H&L, 1:10000; Cat No.
ab6721, Abcam). Signal detection was accomplished by
employing ECL reagents (Amersham Pharmacia Biotech,
Buckinghamshire, United Kingdom), which were then
observed on radiography film (Kodak, New York, USA)
with an exposure time of 30 s. The publicly available
Image]J software (version 1.62, NIH, Bethesda, MD, USA)
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was used for analysis of the protein bands.

Statistical analysis

The latency to complete the task and the number of
errors committed during the test days in the Lashley III
maze were analyzed using a two-way analysis of variance
(ANOVA). Data obtained from the testing phase of the
NORT and from the biochemical assays were analyzed by
one-way ANOVA. Post hoc Tukey’s tests were conducted
using GraphPad Prism 6.01 (GraphPad Software Inc., La
Jolla, California, USA). In addition, a paired Student’s
t-test was used to analyze the time spent exploring each
object during the familiarization phase of the NORT.
Results are expressed as mean+SEM, with differences
considered statistically significant at p<0.05. All data
satisfied the normality criterion as verified by the
Kolmogorov-Smirnov or Shapiro-Wilk tests.

Results

The Lashley I11 task

The two-way ANOV A repeated measures showed not only
significant effects for group (F (4 125 = 1749, P< 0.001),
but also for day (F , |, =21.32, P<0.001) regarding the
latency to access the target box. However, their interaction

(group xday) was not significant (F (16, 125)=1.095,
p=0.3667). Additionally, significant effects of group (F
sy =169.7, P<0.0001) and day (F , ,,. =19.08, P<0.0001)
were observed for number of committed errors. However,
their interaction remained nonsignificant (F 16125~ 1.079,
P=0.3821). Subsequent intergroup analysis revealed that
the time taken to access the target box (Figure 2A) and
average number of committed errors (Figure 2B) were
significantly greater in the aged animals during 2-5%
days of training (at least P<0.05) when compared to
the mice in young group, which indicated the impact of
D-galactose/AICI, to render spatial memory dysfunction.
Administration of HAEMO (75 mg/kg) decreased latency
on the day 5 of training (P <0.05) and lowered the number
of errors on the days 4 and 5 (at least P < 0.05) as compared
to the mice in aged group. Additionally, the Aged + M150
group reached the target box earlier and made fewer errors
than the aged control mice during the 3 to 5% days of the
training phase (at least P<0.05 for both parameters).

The NORT

The study groups exhibited no notable differences in
motor activity during the habituation session (P>0.05,
data not presented). The paired student’s t-test revealed
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Figure 2. The effect of different doses of hydro-alcoholic extract of Melissa officinalis on (A) latency time and (B) number of errors in Lashley Il Maze. Data are
presented as mean+SEM (n=6). Two-way ANOVA, followed by Tukey post-hoc test. ‘P<0.05, “P<0.01, and “"P<0.001 vs. young control group. *P<0.05,
#P<0.01, #*P<0.001 vs. aged control group. [M50, M75, and M150: 50, 75, and 150 mg/kg of hydro-alcoholic extract of Melissa officinalis]
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that the mean exploration times for objects Al and A2
remained consistent throughout the familiarization
session, suggesting a lack of object preference (Figure 3A).
Also, in the test session, only the mice in the young and
Aged +M150 groups exhibited longer time for exploring
the unfamiliar object compared to the familiar one
(Figure 3B, P<0.01). Moreover, one-way ANOVA
analysis of DI revealed a significant difference among
study groups (F , , =4.511, P=0.007). Also, mice in
the aged control group had a significant lower DI value
(Figure 3C, P<0.05) than the young mice. Moreover,
HAEMO at dose of 150 mg/kg significantly improved DI
in the aged mice (P<0.05).

Hippocampal oxidative stress
There were substantial differences in oxidative stress
biomarkers across the study groups. The amount of MDA
(F 4,25 =7-878, P=0.0003) as well as SOD (F (4,25 = 1248,
P<0.0001) and GPx (F (4,25 = 6592, P=0.0009) activities,
and TAC (F , ,; =44.83, P<0.0001) showed significant
variations in the study groups.

As illustrated in Figure 4, the administration of D-gal/
ALCL, could significantly increase MDA levels (P<0.001,
Figure 4A) and lowered SOD (P<0.001, Figure 4B) and

GPx activities (P<0.001, Figure 4C) as well as TAC
(P<0.001, Figure 4D) relative to the mice in young control
group. Conversely, 150 mg/kg of HAEMO significantly
reduced MDA levels while enhancing the antioxidant
activities of both SOD (P <0.01) and GPx (P<0.01) in aged
mice. Furthermore, HAEMO at doses of 75 and 150 mg/
kg resulted in significant increases in TAC levels (P<0.01
for both doses) compared to the aged control group.

hippocampal Sirt-1/Nrf2/NF-«kB pathway

A one-way ANOVA of the immunoblotting results
revealed significant differences in the hippocampal levels
of Sirt-1 (F ,  =12.16, P=0.0007), Nif2 (F , , =7.523,
P=0.0046), the ratio of p-NF-xB/ NF-kB (F “ 1) =24.02,
P<0.0001), TNF-a (F , |, =44.52, P<0.0001), and IL-6
(F , 1p=25.12, P<0.0001) proteins across the groups.
Induction of aging by D-galactose/AICL, significantly
down-regulated both Sirt-1 and Nrf2 levels relative to
the young control group. In contrast, the aging process
resulted in an increased ratio of p-NF-kB/NF-kB and
elevated levels of TNF-a and IL-6, reflecting the effect of
induced model for development of neuroinflammtotion.
However, treatment with HAEMO at a dosage of 150
mg/kg markedly increased the levels of Sirt-1 (P<0.05,
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Figure 3. Effects of different doses of hydro-alcoholic extract of Melissa officinalis on recognition memory. (A) Exploration time of two similar objects in the
habituation phase, (B) exploration time of familiar or novel objects in the testing phase of the NOR test. “P<0.01 shows comparisons between familiar and
novel objects. Paired Student’s t-test. (C) Discrimination index among study groups. One-way ANOVA, followed by Tukey post-hoc test. ‘P<0.05 vs. young
control group, P<0.05 vs. aged control group. Values are represented as mean +SEM (n=6). [M50, M75, and M150: 50, 75 and 150 mg/kg of hydro-alcoholic

extract of Melissa officinalis]
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Figure 4. Effects of hydro-alcoholic extract of Melissa officinalis on (A) malondialdehyde (MDA) levels, (B) superoxide dismutase (SOD) activity, (c) glutathione
peroxidase (GPx) activity, and (D) total antioxidant capacity (TAC) in the hippocampus of study groups. Data are presented as mean +SEM. (n=6). One-way
ANOVA, followed by Tukey post-hoc test. “P<0.01 and “"P<0.001 vs. young control group, P<0.05, #P<0.01, #**P<0.001 vs. aged control group. [M50,
M75, and M150: 50, 75, and 150 mg/kg of hydro-alcoholic extract of Melissa officinalis]

Figure 5A and F) and Nrf2 (P<0.05, Figure 5B and F),
compared to the aged control group. Moreover, all doses
of HAEMO significantly reduced the ratio of p-NF-«kB/
NF-kB (at least P<0.05 for all doses; Figure 5C and F).
Notably, only the HAEMO treatment at 150 mg/kg
effectively decreased TNF-a (P<0.05; Figure 5D and
F) and IL-6 (P<0.001; Figure 5E and F) levels in the
hippocampus when compared to the aged control group.

Discussion

Our findings provide convincing evidence that HAEMO
can improve cognitive deterioration in a mouse model of
artificial aging, probably via tuning of oxidative stress and
inflammatory reactions in the hippocampus.

The mechanism of cognitive decline in aging is
multifaceted, comprising a complex combination of
multiple cellular pathways, resulting in neurotoxicity and
diminished cognitive function.'”* The aging process is
often associated with excessive buildup of free radicals
and diminished antioxidant defenses.** Furthermore, it
is linked to inflammaging, a condition characterized by
persistent low-level inflammation marked by elevated
pro-inflammatory cytokines, establishing an unfavorable
environment for neurons, leading to a deterioration in
cognitive function.” Additionally, neuroinflammation
and oxidative stress are closely linked mechanisms that

have a substantial effect on cognitive malfunction in
the elderly.”® These two elements often work in tandem
and establish a vicious cycle, causing neuronal damage
through mechanisms like excitotoxicity, synaptic loss,
and mitochondrial malfunction. These events impede
synaptic transmission and plasticity, which are crucial for
cognitive abilities.'**54

Long-term D-gal and AICl, administration have
been proven to speed up the emergence of age-related
symptoms such as cognitive decline compared to natural
aging, enabling researchers to investigate age-related
consequences in a shorter time frame.”*** D-gal/AICI, can
induce a range of degenerative alterations in cells that
mimic aging and neurodegenerative disorders, including
aberrant cholinergic system function, neurological
inflammation, oxidative damage, and amyloid-beta
buildup, all of which contribute to the progressive loss of
neurological function.”** Our findings proved that D-gal/
AICI; regimen led to significant impairments in learning
and memory. Our results are consistent with prior
studies®®* that reported similar cognitive impairments
following D-gal treatment. In contrast, the administration
of HAEMO enhanced learning and memory capabilities
in the Lashley III maze and NOR tests. These outcomes
are aligned with previous preclinical and clinical studies
highlighting the cognitive-enhancing effects of HAEMO
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Figure 5. The Effects of hydro-alcoholic extract of Melissa officinalis on hippocampal protein levels of (A) Sirt-1, (B) Nrf2, (C) p-NF-kB/NF-kB, (D) TNF-0, and (E)
IL-6 (F) Representative images of protein bands detected by Western blotting. Values are shown as mean+SEM. (n=3). One-way ANOVA, followed by Tukey
post-hoc test. “P<0.01 and “"P<0.001 vs. young control group, *P<0.05, #*P<0.01, #**P<0.001 vs. aged control group. [M50, M75, and M150: 50, 75, and

150 mg/kg of hydro-alcoholic extract of Melissa officinalis]

in Alzheimer’s disease®**® and diabetes® animal models.
Combining D-gal with AICI, causes oxidative stress and
neuroinflammation through a diversity of interconnected
processes. An excessive level of D-gal causes galactose
oxidase to oxidize into aldose and hydrogen peroxide,
leading to an abnormal increase in the production of free
radicals and a reduction in the capacity to neutralize them.
Concurrently, AICL, disrupts the electron transport chain
of mitochondria, enhances lipid peroxidation, and inhibits
critical antioxidant enzymes, including SOD, catalase, and

GPx.>”*® Moreover, AlCl3 undermines the blood-brain
barrier integrity, which increases the cerebral penetration
of D-gal and multiplies its neurotoxic effects.”” Similar to
previous reports,** we identified increased levels of lipid
peroxidation and reduced activities of critical antioxidant
enzymes in the hippocampus of the aged animals.
These alterations suggest that the antioxidant defense
mechanism is weakened, which causes an imbalance
between free radical production and neutralization. In
contrast, HAEMO-treated animals showed a significant
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improvement in oxidative stress markers. These effects
highlight the potential of HAEMO to bolster the brain’s
antioxidant defenses, thereby mitigating oxidative stress
in the aging model. Rosmarinic acid, the predominant
and bioactive compound in HAEMO, displays strong
antioxidant capabilities by neutralizing free radicals and
chelating metal ions, while also exhibiting notable anti-
inflammatory effects mediated partly via inhibition of
cytokines. The extract also includes several flavonoids and
phenolic acids that synergistically enhance its antioxidant
capacity and exhibit neuroprotective characteristics.’ ¢

Moreover, oxidative stress can directly promote
inflammatory reactions by activating redox-sensitive
transcription machineries such as NF-kB, resulting in
pro-inflammatory gene expression and inflammatory
mediator release from activated microglia and astrocytes.**
This inflammatory response worsens oxidative stress,
leading to the initiation of a vicious cycle that finally
contributes to cognitive dysfunction in the aging brain.®
In this study, we also found upregulated levels of p-NF-xB/
NF-kB, as well as TNF-a and IL-6, in the hippocampus of
aged mice. However, HAEMO decreased the mentioned
items. Based on these findings, HAEMO may prevent
cognitive deterioration in aged mice by disrupting the
vicious cycle formed by the interplay of oxidative stress
and inflammation in the hippocampus. In line with our
results, previous studies supported the antioxidant and
anti-inflammatory effects of HAEMO.*##

Besides, this study showed down-regulation of both
Sirt-1 and Nrf2 proteins in the hippocampus of the aged
animals. These results were in agreement with prior
research that suggests the Sirt-1/Nrf2 pathway is impaired
by aging.!"**” However, treatment with HAEMO
markedly increased the levels of both Nrf2 and Sirt-1,
suggesting that HAEMO can activate the Sirt-1/Nrf2
pathway. These findings were associated with improved
antioxidant defenses, reduced inflammation, and better
cognitive performance in the aged animals. Additionally,
a study revealed that two weeks of HAEMO treatment
decreased inflammatory and oxidative stress markers by
up-regulating Nrf2 mRNA in the hippocampal regions
of pilocarpine-received rats." Another study revealed
that HAEMO extract mitigated redox imbalance and
inflammation linked to hyperthyroidism-induced hepatic
injury via augmenting Nrf2 activity.” Contrary to the fact
that there is no direct evidence of HAEMO’s effect on Sirt-
1, rosmarinic acid, its main constituent, has been shown to
have anti-inflammatory and antioxidant benefits through
modulation of the Sirt-1/Nrf2 pathway.®¢

There is an increasing body of research that indicates
that both natural and synthetic compounds can affect the
Sirt-1/Nrf2/NF-kB pathway and offer neuroprotective
benefits in a variety of models of cognitive impairment
and neurodegeneration.”””* For instance, resveratrol, a
polyphenol present in grapes, has been demonstrated to
activate Sirt-1 and Nrf2, thereby enhancing antioxidant
defenses and reducing neuroinflammation, thereby

enhancing cognitive function in aging models.”*7
Curcumin, the primary active component of turmeric, also
augments Nrf2 activity and suppresses NF-«kB signaling,
thereby enhancing its antioxidant and anti-inflammatory
properties that promote neuroprotection.””” Similarly,
metformin, a prevalent antidiabetic medication, has been
reported to activate Sirt-1 and Nrf2 while suppressing
NF-kB, resulting in enhanced mitochondrial function,
reduced oxidative stress, and superior cognitive outcomes
in animals.®®' Additionally, bioactive substances like
quercetin®® and sulforaphane ** affect Sirt-1/Nrf2/NF-
kB signaling, promoting neuroprotection and reducing
cognitive impairments. These findings emphasize the
importance of the Sirt-1/Nrf2/NF-kB axis in neuronal
health and preventing age-related cognitive decline. Our
study confirms that HAEMO protects the brain through
this pathway, adding to the growing body of evidence that
addressing these molecular pathways can prevent and
treat cognitive decline.

There are some limitations to our study that warrant
consideration. First, our experiments were conducted
exclusively in male mice. Our findings are restricted in
their broader applicability due to the well-established
disparities in neurobiological processes and treatment
responses between males and females. Future research
including both sexes will be essential to determine whether
the neuroprotective effects of HAEMO observed here
extend to female subjects as well. Second, the duration of
HAEMO administration was limited to 60 days. While this
timeframe was adequate for modeling accelerated aging
and detecting significant cognitive and molecular changes,
it does not fully capture the prolonged and gradual nature
of aging in humans. Extended studies will be necessary to
assess the long-term efficacy and safety of HAEMO as a
preventive intervention. Lastly, our study was designed to
evaluate the preventive, rather than therapeutic, potential
of HAEMO. By initiating treatment before the onset of
aging-related impairments, we cannot draw conclusions
about the extract’s effectiveness in reversing established
cognitive deficits. Future investigations should address
both preventive and therapeutic paradigms, as well as
explore different dosing strategies, to more fully elucidate
the translational potential of HAEMO in mitigating age-
related cognitive decline.

Conclusion

This study underscored the potential of HAEMO for
age-related cognitive deterioration. The extract could
improve cognitive performance by diminishing oxidative
stress and inflammation, primarily by activating the Sirt-
1/Nrf2 pathway. Further detailed research is required to
identify the exact mechanisms that that may be involved
in the long-term effects of HAEMO on cognitive function
in aging.
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