

Editorial

Personalized and Precision Medicine: Treating the Individual, not Just the Disease

Abdolhassan Kazemi*^{ID}

Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Received: November 30, 2024, Revised: December 9 2025, Accepted: December 9 2025, ePublished: January 5, 2026

Over the long centuries, medical practice has largely followed a standardized model: diagnose a condition and prescribe the treatment proven to work for the *average* patient in a clinical trial.^{1,2} While this has brought us immense progress, its limitation is clear in the frustration of the “trial-and-error” approach. Two patients with the same diagnosis often respond very differently to the same drug. This is where personalized medicine and its more precise sibling, precision medicine, enter the stage, transforming healthcare from a one-size-fits-all system to a tailored, predictive, and profoundly more effective paradigm.^{3,4}

Though the terms are often used interchangeably, a subtle distinction exists. Personalized medicine is the broader concept of tailoring medical treatment to the individual characteristics of each patient. This can include their clinical history, lifestyle, environment, and preferences.⁵ Precision medicine is a more recent, powerful iteration that specifically uses advanced technologies, like genomics, big data analytics, and molecular diagnostics—to identify subgroups of patients who will benefit most from a specific therapy based on their biological makeup. In essence, precision medicine provides the scientific tools to achieve true personalization.^{6,7}

The engine of this revolution is data. It begins with the human genome. By sequencing a patient’s DNA, doctors can now identify specific genetic mutations driving diseases, particularly in cancer. A lung cancer tumor, for instance, is no longer just “lung cancer”; it can be classified by mutations in genes like *EGFR* or *ALK*. This allows oncologists to prescribe a “targeted therapy” designed to precisely inhibit that mutated pathway, often with fewer side effects and greater success than standard chemotherapy. The drug treats the genetic flaw, not just the organ.^{8,9}

But precision medicine looks beyond genetics. It integrates proteomics (the study of proteins), metabolomics (the study of chemical metabolites), advanced imaging, and even data from wearable

devices like smartwatches.^{10,11} By analyzing these vast, interconnected datasets with artificial intelligence, clinicians can move from reactive care to predictive and preventive care. They can identify a person’s unique risk for developing conditions like diabetes or heart disease years before symptoms appear and intervene with customized lifestyle or medical strategies.^{12,13}

The benefits are transformative. For patients, it means:

- Increased treatment efficacy: Matching the right drug to the right patient from the start.
- Reduced harm: Avoiding drugs that are likely to be ineffective or cause severe adverse reactions.
- Empowerment: Patients become active participants in care plans designed for their unique biology and life.

However, the path forward is not without significant challenges. The high cost of genomic testing and targeted therapies raises concerns about equity and access.^{14,15} Managing, protecting, and interpreting the enormous volumes of sensitive health data requires robust ethical frameworks and cybersecurity. There is also a pressing need to educate both healthcare providers and the public to navigate this new landscape.^{16,17}

Despite these hurdles, the momentum is undeniable. From oncology to psychiatry to rare genetic disorders, precision medicine is proving its value. National initiatives, like the “All of Us” Research Program in the United States, aim to build diverse health databases to ensure these advances benefit everyone.^{16,18}

Conclusion

In conclusion, personalized and precision medicine represent a fundamental shift in the philosophy of healthcare.^{17,19} They reject the notion of the average patient and instead focus on the unique individual at the molecular level. By combining deep biological insight with cutting-edge technology, we are not just treating diseases more precisely, we are redefining what it means to care for a person, paving the way for a healthier future

*Corresponding Author: Abdolhassan Kazemi, Email: kazemi1338@gmail.com

that is truly designed for each one of us.¹⁹⁻²³

Acknowledgments

None.

Competing Interests

The author declares no competing interests concerning authorship and/or publication of this article.

Ethical Approval

Not applicable.

Funding

No funding was received for this work.

References

1. Farrokhi M, Taheri F, Jafari Khouzani P, Rahmani E, Tavakoli R, Moghadam Fard A, et al. Role of precision medicine and personalized medicine in the treatment of diseases. Kindle. 2023;3(1):1-64. doi: [10.5281/zenodo.8176216](https://doi.org/10.5281/zenodo.8176216)
2. Akhoo N. Precision medicine: a new paradigm in therapeutics. *Int J Prev Med.* 2021;12:12. doi: [10.4103/ijpvm.IJPVM_375_19](https://doi.org/10.4103/ijpvm.IJPVM_375_19)
3. Sisodiya SM. Precision medicine and therapies of the future. *Epilepsia.* 2021;62(Suppl 2):S90-105. doi: [10.1111/epi.16539](https://doi.org/10.1111/epi.16539)
4. Wang RC, Wang Z. Precision medicine: disease subtyping and tailored treatment. *Cancers (Basel).* 2023;15(15):3837. doi: [10.3390/cancers15153837](https://doi.org/10.3390/cancers15153837)
5. Marques L, Costa B, Pereira M, Silva A, Santos J, Saldanha L, et al. Advancing precision medicine: a review of innovative in silico approaches for drug development, clinical pharmacology and personalized healthcare. *Pharmaceutics.* 2024;16(3):332. doi: [10.3390/pharmaceutics16030332](https://doi.org/10.3390/pharmaceutics16030332)
6. Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to precision public health. *J Pers Med.* 2021;11(8):745. doi: [10.3390/jpm11080745](https://doi.org/10.3390/jpm11080745)
7. Kothinti RR. Artificial intelligence in healthcare: revolutionizing precision medicine, predictive analytics, and ethical considerations in autonomous diagnostics. *World J Adv Res Rev.* 2024;19(3):3395-406. doi: [10.30574/wjarr.2024.24.3.3675](https://doi.org/10.30574/wjarr.2024.24.3.3675)
8. Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. *Genome Med.* 2022;14(1):101. doi: [10.1186/s13073-022-01102-1](https://doi.org/10.1186/s13073-022-01102-1)
9. Botham J, Shilling V, Jones J. Patient and public understanding of the concept of 'personalised medicine' in relation to cancer treatment: a systematic review. *Future Healthc J.* 2021;8(3):e703-8. doi: [10.7861/fhj.2021-0063](https://doi.org/10.7861/fhj.2021-0063)
10. Ikwelle TA, Ihim AC, Ozuruoke DF, Obi PC, Obi CU, Onuora IJ, et al. Multi-omics integration in personalized medicine: advancing laboratory diagnostics and precision therapeutics in the era of individualized healthcare. *J Drug Deliv Ther.* 2025;15(5):132-42. doi: [10.22270/jddt.v15i5.7112](https://doi.org/10.22270/jddt.v15i5.7112)
11. Udegbe FC, Ebule OR, Ebule CC, Ekesiobi CS. Precision medicine and genomics: a comprehensive review of IT-enabled approaches. *Int Med Sci Res J.* 2024;4(4):509-20. doi: [10.5159/imsrj.v4i4.1053](https://doi.org/10.5159/imsrj.v4i4.1053)
12. Saxena A, Hassan SZ, Bhardwaj J. AI chronic diseases preventive care: integrating electronic health records, genomic data, and real-time patient monitoring with AI for enhanced early detection of chronic diseases and optimization of peptide drug manufacturing. In: Bhattacharya S, ed. International Conference of Global Innovations and Solutions. Cham: Springer; 2026. p. 424-34. doi: [10.1007/978-3-032-02853-2_31](https://doi.org/10.1007/978-3-032-02853-2_31)
13. Fernandes Prabhu D, Gurupur V, Stone A, Trader E. Integrating artificial intelligence, electronic health records, and wearables for predictive, patient-centered decision support in healthcare. *Healthcare (Basel).* 2025;13(21):2753. doi: [10.3390/healthcare13212753](https://doi.org/10.3390/healthcare13212753)
14. Jamalinia M, Weiskirchen R. Advances in personalized medicine: translating genomic insights into targeted therapies for cancer treatment. *Ann Transl Med.* 2025;13(2):18. doi: [10.21037/atm-25-34](https://doi.org/10.21037/atm-25-34)
15. Suura SR. Integrating genomic medicine and artificial intelligence for early and targeted health interventions. *Eur Adv J Emerg Technol.* 2025;3(1):1-12. doi: [10.5281/zenodo.16080612](https://doi.org/10.5281/zenodo.16080612)
16. Biray Avci Ç, Goker Bagca B, Shademan B, Sabour-Takanlou L, Sabour-Takanlou M, Nourazarian A. Precision oncology: using cancer genomics for targeted therapy advancements. *Biochim Biophys Acta Rev Cancer.* 2025;1880(1):189250. doi: [10.1016/j.bbcan.2024.189250](https://doi.org/10.1016/j.bbcan.2024.189250)
17. Kumar D. The genomic and precision medicine in clinical practice—current perspectives and future directions. In: Genomics, Populations, and Society. Academic Press; 2025. p. 123-36. doi: [10.1016/b978-0-323-91799-5.00017-6](https://doi.org/10.1016/b978-0-323-91799-5.00017-6)
18. Delpierre C, Lefèvre T. Precision and personalized medicine: what their current definition says and silences about the model of health they promote. Implication for the development of personalized health. *Front Sociol.* 2023;8:1112159. doi: [10.3389/fsoc.2023.1112159](https://doi.org/10.3389/fsoc.2023.1112159)
19. Yetgin A. Revolutionizing multi-omics analysis with artificial intelligence and data processing. *Quant Biol.* 2025;13(3):e70002. doi: [10.1002/qub.2.70002](https://doi.org/10.1002/qub.2.70002)
20. Babu M, Lautman Z, Lin X, Sobota MH, Snyder MP. Wearable devices: implications for precision medicine and the future of health care. *Annu Rev Med.* 2024;75:401-15. doi: [10.1146/annurev-med-052422-020437](https://doi.org/10.1146/annurev-med-052422-020437)
21. Hassan M, Awan FM, Naz A, deAndrés-Galiana Ej, Alvarez O, Cernea A, et al. Innovations in genomics and big data analytics for personalized medicine and health care: a review. *Int J Mol Sci.* 2022;23(9):4645. doi: [10.3390/ijms23094645](https://doi.org/10.3390/ijms23094645)
22. Velmovitsky PE, Bevilacqua T, Alencar P, Cowan D, Morita PP. Convergence of precision medicine and public health into precision public health: toward a big data perspective. *Front Public Health.* 2021;9:561873. doi: [10.3389/fpubh.2021.561873](https://doi.org/10.3389/fpubh.2021.561873)
23. Huang PH, Kim KH, Schermer M. Ethical issues of digital twins for personalized health care service: preliminary mapping study. *J Med Internet Res.* 2022;24(1):e33081. doi: [10.2196/33081](https://doi.org/10.2196/33081)