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Abstract
TRAIL or tumor necrosis factor-related apoptosis-inducing ligand has been one of the major 
frontiers for the chemotherapeutic approach to treating carcinogenesis. Despite the emergence 
of TRAIL resistance cancer cell lines, it has been extensively studied for its unique property 
to induce apoptosis and provide specificity to any other conjugated chemotherapeutic agent. 
TRIAL highly reduces the dose and increases specific and targeted action against the cancer cells. 
It is a specific agonist for the death receptors DR4 and DR5 present on the cancer cell surface. 
Normal cells have more expression of decoy type of death receptors, which makes the use of 
TRAIL safer for regular cells. The TRAIL-drug conjugate systems have been under the radar due 
to their possible high synergistic potential and may open the door for the future cancer-specific 
targeted treatment frontier. This current study was conducted with a particular aim to provide a 
concise and simple amalgamation of current scenarios of different conjugations of this molecule 
along with various other molecules, RNAs, ligands, and anticancer drugs. Along with possible 
delivery systems of TRIAL that can have a significant future and the promise that is held by this 
particular way of cancer combinational chemotherapy with special interest in colorectal cancer.
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Introduction
Even though there have been numerous attempts to 
create novel strategies aimed at the therapy of cancer, it 
still eludes the grasp of researchers all over the world by 
remaining one of the major causes of death in the world. 
Present therapies for cancer include surgical removal 
of tumors and traditional radio and chemotherapy. The 
basics of these treatment options are either removal of 
the tumor limiting cancer cell division and/or promoting 
the death of cancer cells.1 Despite numerous attempts and 
successes, cancer can notoriously be reoccurring and can 
build resistance to therapies. Huge efforts are being made 
to develop novel paths to increase the specific targeting 
and leap over tumors’ resistance mechanism to current 
therapies.2 Colorectal cancer (CRC) is termed the third 
leading newly diagnosed carcinoma on the planet and 
the major cause of death in the United States.3-5 Most 
CRCs are diagnosed as adenocarcinoma, comprising 
about 90% of all recorded cases. Some of the other rare 
diagnoses include adenosquamous carcinoma, spindle cell 
carcinoma, squamous cell carcinoma, and undifferentiated 

carcinoma.6 Genetic mutation and inheritance account for 
almost 35-40% of CRC whereas the majority, 60-65% cases 
recorded are sporadic, which is defined as occurring in 
individuals without any ancestral history of CRC.7,8

William Coley noticed that few sarcomas reduced in 
size with bacterial infections. This led to the first discovery 
of Tumor necrosis factor (TNF) for the first time.9,10 The 
term Tumor necrosis factor was introduced much later on 
in the mid-20th century when it was found that shrinking 
of tumor size was observed as the direct result of the 
recruitment of one protein. This attribute of the protein 
led to the identifying term.11 This protein led studies to 
potentially establish TNF as a target to induce apoptosis 
and search for similar molecules. Molecules like CD95 
were tested for systemic use but this process shut down 
almost immediately due to severe reported hepatotoxicity. 
However, as it is said “third times a charm”, another TNF 
superfamily (TNFSF) member, that was identified as 
Tumor Necrosis Factor Related Apoptosis Inducing Ligand 
(TRAIL, also termed as Apo2L or TNFSF10) showed high 
selective induction of apoptosis in malignant cells without 
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causing adverse effects on normal cells like its predecessors 
namely TNF or CD95 agonists.12,13 The present work aims 
to give insights into the pathogenesis, conventional and 
novel treatment options for CRC, as well as TRAIL and its 
various delivery techniques, and to have an insight into the 
future direction it may have.

Methods
To bring the latest studies and research that have been 
done on CRC and TRAIL we conducted a thorough 
literature search, specifically the reputed databases such 
as Scopus, PubMed, and Google Scholar were used. A 
clinical study information search was conducted using 
clinical key by Science Direct and clinicaltrials.gov.in. 
The focus of the information search was till June 2024. 
The keywords that were emphasized during the search 
were ‘TRAIL’, “targeting’ ‘TRAIL formulations’ ‘Colorectal 
cancer’. Data on epidemiology and colorectal cancer were 
obtained through the use of WHO’s open cancer database 
GLOBOCAN.

Colon Cancer Epidemiology 
CRC sits in the 3rd position in global incidence numbers as 
per WHO GLOBOCAN data (Figure 1). Breast and lung 
are the only other cancers having a higher incidence.14 
CRC is held accountable for almost 10% of total diagnosed 
carcinomas. According to GLOBOCAN20, CRC is the 
second most diagnosed cancer only trailed by breast 
cancer, and the third most diagnosed malignancy after 
lung and liver cancer in females and males respectively. 
However, mortality in females is almost 19% lower than 
in males, where mortality among all carcinomas in both 
males and females stands at around the 12-13% range.14 
Geographically, if we take numbers per 1,00,000 population 
CRC incidents are most in developed countries in the 
EU. The number of incidents reduces with the reduction 
in the human development index. However, considering 
the sheer number of cases diagnosed, China tops the 
board followed by the United States of America, Japan, 
Russia, and then India. Recent continuous development in 
countries like India and African nations has started a trend 
of the increased rate of CRC as well, and it is projected that 
the number of diagnosed cases of CRC in the world may 

Figure 1. GLOBOCAN 20 statistics on cancer. 1A: relationship of human development index with the incidence of CRC, countries with 
higher development index showed high incidence of CRC, 1B: countries with highest CRC load (data is cases per 100,000 people), 1C: 
Incidence and mortality due to the leading carcinomas in females worldwide. 1D: incidence and mortality due to the leading carcinomas 
in males. 
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rise approximately to 2.5 million per year by 2035.15

Risk factors of CRC
Epidemiological studies have shown male sex and 
advanced age to be two of the major risk factors for the 
progression and incidence of the disease. The growth and 
pathogenesis of CRC are influenced by both genetic and 
socio-environmental risk factors (Figure 2). >10% of all 
CRC cases reported have been directly linked with varying 
degrees of hereditary history, risk of developing CRC also 
changes with factors such as the number of family members 
affected in the past and the age when it was diagnosed.16,17 
Studies conducted by Czene et al.,18 and Lichtenstein 
et al.19 based on familial and twin study models it was 
observed that estimated CRC heritability is spread over 
a range of 12-35%. Various common single-nucleotide 
polymorphisms are successfully identified to date, which 
are held responsible for the higher incidence of CRC, but 
the majority of the hereditary factors that may influence 
CRC incidence or progression still require in-depth study 
as they continue to be a mystery for the researcher.20 Out 
of all the reported cases of CRC, 5-7% only have been 
directly linked to a particular well-defined nucleotide 
polymorphism.21 Individuals suffering from chronic 
inflammatory bowel disease (IBD) and patients who 
priorly have been diagnosed with either CRC or adenomas 
are always at higher risk of developing CRC therefore they 

should be subjected to a higher level of surveillance and 
monitoring of the problem for early detection22,23 CRC 
linked with genes are often branched into two major terms, 
non-polyposis: which includes Lynch syndrome and 
familial CRC and polyposis syndromes. Due to the higher 
number of polyps present in the latter type, it is generally 
easily diagnosed and monitored by physicians with simple 
polyp examinations, however, the former type, especially 
Lynch syndrome is often misdiagnosed and stays hidden 
for the smaller number of adenomas resembling sporadic 
lesions. Patients who are diagnosed with Lynch Syndrome, 
have also been found to be at high risk for endometrial 
malignancies such as carcinomas occurring in the small 
intestine, ovaries, stomach, ureter, hepatobiliary system, 
and renal pelvic region.24 Apart from the genetic risks 
and reduced presence of mismatch repair systems, several 
other factors contribute to the high incidence rate of CRC, 
though they are highly modifiable they continue to be 
the larger contributors to the increasing number of CRC 
identifications in the present scenario. Lifestyle habits such 
as smoking, chronic consumption of alcohol, sedentary 
lifestyle leading to higher body weight, dietary habits 
like consumption of a larger amount of red meat, and 
continuous processed food intake. Sometimes it is assumed 
that the association between CRC and type II diabetes is 
only due to an inactive lifestyle and obesity but factually it 
was seen that even after corrections of these problems, the 

Figure 2. Representation of the 3 major pathways for CRC development.
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individuals having type II diabetes have always been at high 
risk of CRC.25-29 The research focused on intestinal flora 
revealed that chances of CRC were significantly higher in 
individuals infected with organisms such as Fusobacterium 
nucleatum, Bacteroides fragilis, etc.30,31

Pathogenesis of colorectal cancer
Polyps are generally considered the starting point for 
most malignancies, polyp can be defined as a neoplastic 
precursor lesion or wound which is eventually evolved 
from an aberrant crypt. It is estimated that this polyp 
eventually progresses to CRC in 10-15 years. The majority 
of CRCs are assumed to have originated from a stem cell 
or stem-cell-like cell. Accumulation of chromosomal 
alterations at a genetic and epigenetic level results in 
the stem cells of cancer; they are seen at the base of the 
crypts formed in the lining of the colon and serve as 
the point of initiation, maintenance, and progress of the 
tumors32,33 All of the CRCs in reported progress through 
one of the two pathways, 70-90% of the CRC develops 
through an adenoma-carcinoma pathway where the rest 
10-20% have shown to have serrated neoplasia pathway 
containing distinct genetic and epigenetic factors and steps 
in a sequential pathway.34  Lynch syndrome, being rather 
uncommon, consists of 2-7% of total cases, which progress 
through a microsatellite instability phenomenon.15 The 
concise way of progression of CRC by different mechanisms 
is depicted in Figure 3, and the pathophysiology of CRC is 
depicted in Figure 4.

Subtypes of colorectal cancer
CRC is subdivided into types based on molecular 
features; right-sided CRC is fairly distinct from left-sided 
CRC in patients; these two types are even dissimilar 
embryologically, biologically, and even by their tendencies 
of metastasis. The difference between them is increasingly 
being treated as a point of interest for prediction and as a 
marker of CRC progress and outcomes of therapeutics by 
different drugs like anti-EGFR molecules.35,36 Consensus 
molecular subtypes or CMS classification of CRC was 
done in 2014, keeping gene expression as the foundation 
of the difference. This system divided CRC into 4 groups or 
subtypes: CMS 1 or  MSI immune type, CMS2 or canonical 
type, CMS3 or metabolic type, and CMS4 or mesenchymal 
type.37 CMS1 and CMS3 are the ones often seen in the right-
sided CRC. At present, the choice of systemic treatment 
for CRCs is based on mutation status and sidedness of 
the tumors but CMS classifications are currently being 
explored in clinical trials as a novel prediction tool.3

Diagnosis of colorectal cancer
Clinical symptoms
Despite having a limited number of visible symptoms, 
CRC can be an early detection by physical signs like rectal 
bleeding (though common for benign and malignancy), 
For patients aged over 45, any episode of rectal bleeding 
is a direct indication for colonoscopy examination, for 
patients within a lesser age limit, the factors are however 
broader such as blood mixed feces, sudden weight loss, 
anorexic conditions, and changes in bowel movement and 
it’s the frequency.38

Figure 3. Detailed pathophysiology for initiation, promotion, and progression of CRC.
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Endoscopy technique
Colonoscopy is the go-to method for diagnosing and 
detecting tumors and risk factors of CRC. An endoscopist 
can detect both, the presence of advanced lesions and 
subtle small lesions in mucosa which need to be subjected 
to extensive investigation of mucus membrane and in-
depth study of bowel preparations.39

Imaging techniques
After colonoscopy examination, imaging acts as a 
secondary step to ensure accurate location mapping and 
distant staging of CRC. This is known as locoregional 
staging, it is done periodically by means of MRI which in 
turn helps to modify and change the therapeutic guidelines 
for individual patients. CT scanning and PET-CT imaging 
are gaining popularity in staging and evaluating the disease 
load. Though PET-CT use still faces a lot of debate. CT 
scanning is usually used for distant staging of the liver and 
lungs. MRI is used for lesions of the liver.40,41

Laboratory assessment tools
Laboratory techniques such as CBC (Complete Blood 
Count), and the concentration of carcinoembryonic 
Antigen are the generally recommended guidelines for the 
detection of CRC.42

Histopathological screening
Since the beginning of carcinoma identification, 
histopathology has been the major pillar for TNM staging 
and grading, Subtyping, and evaluation of metastasis. 
Tumor-based markers are nowadays gaining popularity, 
and implementation of mismatch-repair testing, and 

immunoscoring systems is helping in the early detection of 
Lynch syndrome.43,44

Current available therapeutic strategies and their 
limitations
Endoscopic resection technique
Due to increased surveillance and higher amount of 
screening of individuals from vulnerable groups such 
as people with genetic CRC history with reoccurring 
inflammation are now can be subjected to treatment 
by resection of the early malignant polyps in an en-bloc 
manner, several T1 cancer and even submucosal invasive 
cancers can be resected using the available techniques 
which include, a) en-bloc endoscopic mucosal resection 
b) endoscopic submucosal dissection, c) endoscopic full-
thickness resection. The choice of the preferred technique 
is dependent on the extent of invasion in the submucosal 
layer and the staging of the malignancy, studies have 
indicated that this technique can be both affordable and 
safer than that of surgical removal however still many do 
not get the chance to discuss the opportunities with their 
caregivers. The procedure is a demanding technique that 
requires highly trained and skilled professionals therefore 
it is only advised to be carried out in well-established 
centers with proper manpower.45,46

Surgical management
When it comes to treatment to cure CRC, surgical removal 
is at the top and the forefront of the list. Different methods 
are used for different locations of CRC. For colonic 
malignancies, laparoscopy has established itself as the 
standard go-to procedure in many countries throughout 
the world as the technique has shown enhanced short-term 

Figure 4. Schematic representation of the mechanism of TRAIL in apoptosis.
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benefits and effectiveness in clinical trials. The second and 
most common technique is by dissecting sharply along 
embryological planes using the principles of mesocolic 
excision. 

However these processes possess a potential issue of 
lack of specialization and adequate training, another 
locus for controversy around the surgical procedures is 
the amount of extent of the lymphadenectomy between 
the two types, that is extensive D3 type and the more 
limited D2 type excision. The latter might even add to the 
morbidity risk factors.  Carcinomas of the rectum are even 
hard to remove surgically due to the accessibility problem 
and complex structure and positioning of the pelvis, the 
standardized procedure for rectal malignancies is termed 
total mesorectal excision, the extent of the procedure is 
generally determined by the involvement of the sphincter 
in malignancies and the surrounding tissues. There is 
still debate about using laparoscopic procedures in rectal 
cancer.47,48

CRC radiotherapy
It has been established by several trials that preoperative 
radiotherapy can be better than postoperative ones, 
especially in reducing the risk of recurrences. Even though 
it entirely depends upon the stage of cancer, in recent 
times, radiotherapy has seen its use being maximized in 
the cases that are termed as medium to high risk keeping 
MRI staging as the basis. Where the place of most used 
therapy is held by chemoradiotherapy consisting of a dose 
of “45-50 gray in 25-28 fractions”, using fluoropyrimidine 
in the role of radiation sensitizer. For tumors in the rectum, 
generally short course radiotherapy is implied, especially 
in the European Union. At present, chemoradiotherapy is 
followed by close observation of every clinical response 
of the patient, which gave rise to the new approach of 
preserving colon treatment. Most of the early detection 
cases are treated with radiotherapy, if not, total mesorectal 
excision is preferred singularly. This showed a trend 
of preservation of the colon for 50-60% of the patients 
however the rest still need to ultimately go for surgery and 
overtreatment of radiotherapy causing severe disruption of 
colonic structure.49,50

Local treatments for metastatic CRC
With recent studies, there has been an increase in the 
number of available local therapies for the treatment of 
stage IV CRC. They are now applicable to several patient 
categories. Local therapies are developed keeping long-
term treatment and possibly mitigating the disease. 
High tumor morbidity is reported with advanced 
technological innovations in localized therapies.  When 
CRC is metastatic, and localized therapies are required 
for the metastases, for the liver, ablative therapy with 
systemic treatment is the preferred option most of the 
time. Mostly chosen is radiofrequency ablation for liver 
and percutaneous applications. Stereotactic radiotherapy 
and microwave-assisted ablation are the ones that are 

preferred in the case of larger lesions and those that are 
associated with vascular structures. The condition that is 
most debated is the treatments for the metastases in the 
lungs, in this regard, stereotactic radiotherapy, surgical 
resection, and ablation, all are viable choices of therapy.  
Invasion of tumors in the peritoneum is generally regarded 
as untreatable but cytoreductive surgery and hyperthermic 
chemotherapy have been proven to reduce mortality in 
such cases.51,52

Systemic chemotherapeutic approach
A MOSAIC study in 2009 proved that the inclusion of 
oxaliplatin with fluorouracil or capecitabine improves 
the survival rate for poorly differentiated and high-risk 
T4-type carcinomas. This soon became the new standard 
for chemotherapeutic approach but the addition of 
oxaliplatin brought the serious problem of cumulative 
sensory neuropathy. The benefits of adjuvant therapies 
are ruled out if there is a presence of dMMR (DNA 
mismatch repair) as a marker in patients with stage II 
tumors. A similar approach of therapy is followed even 
for patients with rectal cancer. One more controversy 
or drawback of adjuvant chemotherapy in rectal cancer 
is, that drugs like irinotecan and biological agents that 
work well in a metastatic situation have failed to show 
efficacy in an adjuvant therapy setting. Earlier, 6 months 
of chemotherapy as an adjuvant approach was followed 
as the standard, in the year 2006, the IDEA (International 
Duration Evaluation of Adjuvant Chemotherapy) 
collaboration was established conducted a randomized 
clinical trial with 12,834 participants and concluded that 
the duration of adjuvant chemotherapy should be 3 months 
for efficacy and reduced toxicity, especially reduction 
in chances of cumulative neuropathy.53-56 For the cases 
of metastatic CRC, the treatment regime includes a base 
of a chemotherapeutic drug, such as fluoropyrimidines, 
oxaliplatin, and irinotecan, on top of the base, a biological 
agent like anti-VEGF (vascular endothelial growth 
factor) or anti-EGFR (epidermal growth factor receptor) 
antibodies are added based on patient and tumor-specific 
factors. Several lines of similar regimens are likely added to 
the therapy for patients with metastatic CRC.

CRC and miRNA
MiRNAs usually are heavily protected in every species 
due to their high importance in protein translation and 
its regulation, they are involved as versatile modulators in 
the progression and generation of CRC in inflammation, 
apoptosis, cell cycle mediators, cellular migration, stress 
response, as well as in pathogenic processes such as 
chemoresistance, chemosensitivity, etc. In recent years 
various miRNAs have been studied and were found to be 
effective in the treatment of CRC. miRNA-1 was seen to 
modulate the MAPK and PI3/AKT pathway thus causing 
suppression of EMT transition. UHRF1 was found to be 
regulated by the presence of miRNA-9. Downregulation of 
the BCL2 and SOX2 was seen in the treatment comprising 
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miRNA-15a when given with 5 fluorouracil (5FU), 
synergistic action was seen in the case of miR-22, and it 
was confirmed that this miRNA enhanced the sensitivity 
of CRC to the treatment regiment of 5 FU. The miRNA-30 
group (miRNA 30a, 30a-5p,30b) showed targeting of the 
insulin receptor, ITGB3, KRAS, PI3CD as well as BCL2. 
MiRNA 203 delivered anti-CRC action by regulating 
ZNF217 and EIF5A2.57

Biologics and other therapy options
The first approved active biological agent targeting 
angiogenesis was Bevacizumab, having an anti-VEGF 
action. It showed significant improvement in survival 
rate among all types of CRC patients in a clinical trial 
conducted in 2004.58 This was followed by agents like 
aflibercept and ramucirumab. CRC sidedness plays a major 
role in the determination of biological therapy because of 
their different origin, for example, anti-EGFR antibodies 
are practically rendered useless in right-sided CRCs as a 
first line in the metastatic situation. Apart from that, CRCs 
are tested for RAF and RAS i.e., NRAF, KRAS, and BRAF 
mutations before the suggestion of any anti-EGFR therapy. 
In the current CRC scenario, left-sided metastatic CRC 
agents such as cetuximab or panitumumab (anti-EGFR), 
or bevacizumab from the anti-VEGF category are chosen 
as optimum first-line therapy.59,60

Monoclonal antibodies, combined with chemotherapy 
and MEK inhibitors have emerged as highly effective in 
many clinical trial settings and therefore are now included 
in standard guidelines. Newer agents approved for 
metastatic CRC include a dirty tyrosine kinase inhibitor, 
regorafenib, and a combination dosage of trifluridine and 
tipiracil, coded as TAS-102 which acts as an oral anti-
metabolite. They are effective specifically for those patients 
who are non-responsive toward the first-line systemic 
approach of treatment.61,62

Nanotechnology in the Treatment of CRC
The major drawback that has been hitting the 
chemotherapeutic approach of treatment of both 
metastatic and non-metastatic colorectal malignancies has 
been the excessive toxicity and array of adverse reactions 
that are associated with them. Therefore, for the past 
four decades, researchers have been heavily dedicated 
and directed towards the exploration of pharmaceutical 
nanotechnology as the basis of diagnosis and therapy of 
CRCs. Nanotechnology, in general nanoparticles (NPs) 
in pharmaceuticals, is preferred due to their high level 
of compatibility and suitability, that is it is very easy to 
manipulate and diversify them structurally altering their 
biological properties suiting them for any of the tasks like 
staging, treating, and diagnosing CRC.63 When it comes 
to drug molecules, the application of nanotechnology 
mostly resonates with the enhancement of solubility, 
therefore increasing bioavailability and absorption, giving 
the molecule a higher degree of stability, and enabling it 
to be target-specific and even attributed to the property of 

controlled release.64 The higher ease of modification also 
enables us to tag and modify the surface of nanoparticles 
with various organic and chemical agents to design them 
as multi-targeting formulations, but also to overcome the 
issue of acquired drug resistance due to their size, they will 
not require any transport mechanism to enter the cells. 
With NPs it is easy to target receptors or proteins present 
in the intracellular domain that is inside the cytoplasm or 
nucleus.65 Nanoparticles that have been proven to show 
actions against CRC majorly fall under 3 classes, polymeric, 
metallic, and organic NPs. Each class comes with its unique 
set of advantages and among these 3 classes, 7 different 
types of NPs are of high interest, namely iron oxide NPs, 
quantum dots, polylactic-co glycolic acid (PLGA) NPs, 
dendrimers, silver (Au) NPs, Carbon nanotubes, exosomes, 
novel bionics or cell bases carriers (red blood cells, stem 
cells, bacteria, platelets, neutrophils) and liposomes when 
it comes to colorectal malignancy management.66,67 

Origin of TRAIL
TNF-related apoptosis-inducing ligand (TRAIL), also called 
Apo2 ligand or Apo2L, was first described as a molecule 
that can induce apoptosis in a Fas (Apo1 receptor of TNF 
family)-independent manner.68 Later it was revealed that 
the apoptosis is through Fas-associated proteins.  When it 
was first described, TRAIL was found to be a member of 
the TNF superfamily (SF). The interest in TRAIL sparked 
when it was reported that it induces apoptosis through 
attachment with one of two death receptors (DRs) namely 
DR4 and DR5,69 while it spared the normal vital cells in 
the body. This has led studies to develop TRAIL, TRAIL 
receptor (TRAIL-R), and TRAIL conjugating antibodies 
for decades to develop a tumor-specific targeted therapy. 
As far as the physiological effects of TRAIL are concerned, 
it’s associated with cytotoxic effector cells and helps in 
homeostasis as a mediator in effector immune cells for the 
“activation-induced cell death” (AICD) pathway.70,71 

Chemistry of TRAIL
Structurally TRAIL can be described as a type 2 
transmembrane protein consisting of 281 amino acids and 
a predicted molecular weight of 32.5 kDa, but when the 
moiety is matured and fully glycosylated the molecular 
weight is predicted as 41 kDa.72 A TRAIL monomer is said 
to contain two antiparallel β-pleated sheets which form a β 
sandwich that is situated as a core scaffold, and it interacts 
with the nearby subunits in a head-to-tail manner to make 
a bell-shaped homo-trimer, that is protein unit containing 
three identical polypeptide chains. The two ends of 
this, named “bottom” and “top” are wide and narrow 
respectively. Highly disordered loops make the top unit, 
β strands A‘‘, A, H, C, and F are the ones that form the β 
inner sheet responsible for the intersubunit contacts, and 
the strands B’, B, G, D, and E form the outer β sheet. The 
arrangement of the TRAIL homotrimer is such that one 
end of the β sandwich in each subunit is packed against 
the inner sheet of the adjacent subunit. TRAIL exhibits 
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a relatively high content of aromatic residues (17% of 
total residues). Arene remnants, being eight in number 
namely, Histidine-125, Phenylalanine-163, Tyrosin-183, 
Tyrosin-185, Tyrosin-189, Tyrosin-243, Phenylalanine-274, 
and Phenylalanine-278 are the ones that are present on the 
surface of the inner sheet and furnish a hydrophobic stage 
for substantial extremity interactions between adjoining 
subunits.73

Receptors of TRAIL
TRAIL is unique among all the TNFSF members, out 
of which 4 are membrane-bound receptors and one is 
a soluble receptor. Their names are DR4/TRAIL-R1, 
DR5/TRAIL-R2,74 DcR1/TRAIL-R3,69,75 and TRAIL-R4/
DcR2.76 Apart from these four, another soluble receptor 
for TRAIL has been described in the late 1990s, called 
osteoprotegerin, interestingly, this was first believed to 
be a receptor for RANKL/OPGL. Later, it was shown to 
have binding with TRAIL,77,78 Among these receptors, only 
the DR4, and DR5 are the ones which are known to have 
cytoplasmic death domain (DD) which is responsible for 
the action of evocation of apoptosis, the other receptors, 
however, do not possess any such function on programmed 
cellular death. These receptors have also been mentioned 
as decoy receptors. The reason for their non-functionality 
is that DcR1 lacks an active cytosolic death domain region, 
and DcR2 has a truncated, cytoplasmic Death Domain 
that is also nonfunctional. It remains a turbid illusion 
among researchers of the possible physiological role of 
osteoprotegerin.79 TRAIL, as a Receptor Target for Cancer, 
so many researchers revealed the various mechanisms that 
aid or control cell death. Dulanermin and SCB-313 have 
recently been investigated as an agonist for TRAIL.

Mechanism of TRAIL in the Induction of Apoptosis
Details have been unveiled in the past decade regarding 
the mechanism of TRAIL-induced apoptosis, we now 
have a clearer view of the entire picture, upon triggering of 
death receptors by TRAIL, the receptors TRAIL-R1/R2 go 
through homo trimerization. This leads to the recruitment 
of their intracellular part or Death Domains (DD) to 
activate pro caspase 8 via the death effector domain as a 
direct result of activation of FADD (FAS-associated death 
domain protein). The entire process is to create DISC 
(death-inducing signaling complex) to further employ pro-
caspase-8. The activated form of Pro-caspase-8 is a dimeric 
entity that is then liberated to break down and activate the 
effector caspase 3, thus initiating apoptosis in a certain 
type of cell (type I).80 For the other type of cells (Type 
II) activation of the mitochondrial pathway is another 
necessity to initiate the movement of apoptosis reactions. 
In this cascade of events, the Pro-caspase-8 breaks down 
the BH3 Interacting domain death agonist (Bid), which 
is followed by oligomerization of BAK and BAX (BCL2 
antagonist/Killer and BCL2 associated X respectively) 
takes place in the outer mitochondrial membrane which 
leads to the formation of pores. Facilitating the release 

of cytochrome C takes place and in conjunction with 
apoptotic peptidase activating factor 1 (Apaf-1) and pro-
caspase-9 forms an assembly structure known as the 
apoptosome. This structure further goes on to activate 
the various other effector caspases and even increases 
the cleavage of caspase-3. This entire mechanism results 
in a superfluity of the destruction of cellular proteins 
that induces apoptosis.81-83 The mechanism of TRAIL is 
depicted in Figure 4 in a simplified way.

TRAIL in the Anticancer Action Plan and Clinical Trials
Two major forms of TRAIL are present in our system, 
soluble TRAIL (sTRAIL) and membrane-bound TRAIL. 
When it comes to strategies for delivering the TRAIL for 
anti-cancer action there have been 2 approaches that are 
pursued in clinical trials, they are recombinant s-TRAIL 
like Apo2L.0 or AMG-951 also called dulanermin and 
TRAIL-R targeting agonistic antibodies. Among these, 
the latter treatment showed promising results in pre-
clinical studies but when it comes to human trials antibody 
treatments have failed to induce apoptosis. This is because 
most of the tumors get resistance against TRAIL during 
ongoing therapy.84,85 The second hurdle faced in TRAIL 
was the discovery of non-apoptotic pathways. Trauzold 
et al.86 showed that TRAIL-R agonist treatment helped in 
inducing metastases the in liver for an animal xenograft 
model of pancreatic adenocarcinoma. In another study, 
the possibility of TRAIL being exploited by malignant cells 
to increase proliferation and invasion.87 To overcome this 
problem TRAIL deliveries are designed in combination 
with sensitizing agents. With proper caution sensitization 
of vital normal cells against cells must be avoided. Drug 
delivery systems can be designed for TRAIL keeping a few 
shortcomings in mind as explored in the clinical trials for 
Apo2L.0 or dulanermin such as rapid clearance, reduced 
plasma T1/,2, and the problem of low accumulation of TRAIL-
Death receptors. When it comes to TRAIL-R antibodies, 
despite having a higher plasma half-life, practical problems 
were observed when the antibodies failed to accumulate 
near the DRs cause of a lack of external crosslinking.68,88 
Various TRAIL-R antibodies, recombinant, TRAIL, and 
multivalent molecules have entered clinical trials for 
various malignancies and are listed in Table 1.
TRAIL-induced apoptosis is also sensitive to synergistic 
action by other drugs, Caldiran et al.89 showed that the 
combination treatment of bortezomib and epirubicin can 
enhance the TRAIL-sensitized apoptosis via upregulating 
the death receptors in CRC. 5-Fluorouracil and genistein 
can enhance DR4, DR5 regulated TRAIL-induced 
apoptosis via XIAP, DcR1, and MMP reduction, enhanced 
ROS.90

TRAIL Formulations for the Improved Mechanism
Formulators have designed the TRAIL drug delivery system 
to lead over the main 2 hurdles, (I) reduced stability and 
(II) less accumulation in DRs, to overcome these problems 
modification in valency with stability and conjugations to 
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Table 1. Details of clinical trials conducted for R-TRAIL and TRAIL-R antibodies for various types of malignancies, data obtained from 
clinicaltrial.gov.91

Drug Name Disease for trial Mechanism of action Trial design Trial ID

Trail-R agonistic antibodies

Mapatumumab Advanced hepatocellular 
carcinoma

Monoclonal antibody 
targeting TRAIL-R1

A randomized, multicenter, 
blinded, placebo-
controlled study

NCT01258608

Mapatumumab Multiple myeloma Monoclonal antibody 
targeting TRAIL-R1

Multi-centre, open-label, 
randomized study

NCT00315757

Mapatumumab Relapsed or refractory non-
Hodgkin’s lymphoma

Monoclonal antibody 
targeting TRAIL-R1

A multi-center, open-label, 
dose-escalation study

NCT00094848

Mapatumumab Advanced non-small cell lung 
cancer

Monoclonal antibody 
targeting TRAIL-R1

Randomized, Multi-
Centre, Open-Label Study

NCT00583830

Tigatuzumab Metastatic or unresectable non-
small cell lung cancer

Monoclonal antibody 
targeting TRAIL-R2

Randomized, double-
blinded, placebo-
controlled

NCT00991796

Tigatuzumab Pancreatic Cancer Monoclonal antibody 
targeting TRAIL-R2

Phase 2 multi-center, 
open-label study

NCT00521404

Tigatuzumab Metastatic triple-negative breast 
cancer

Monoclonal antibody 
targeting TRAIL-R2

An open-label, 
randomized study

NCT01307891

Conatumumab Pancreatic cancer Monoclonal antibody 
targeting TRAIL-R2

A randomized, double-
blind study

NCT00630552

Multivalent antibodies

Gen1029 Colorectal cancer non-small cell 
lung cancer triple negative breast 
cancer renal cell carcinoma 
gastric cancer pancreatic cancer

1:1 mixture of two 
humanized noncompeting 
DR5- specific mAbs, 
each carrying an E430G 
epimerization enhancing 
mutation

Randomized, open-label, 
multicenter study

NCT03576131

Recombinant TRAIL

Dulanermin B-Cell non-Hodgkins lymphomas 
that have progressed following 
previous rituximab therapy.

Recombinant TRAIL 
triggering apoptosis via 
activation of DR4 and DR5

A randomized, open-label, 
multicenter study

NCT01258608

Dulanermin Previously untreated stage IIIb/
IV non-small cell lung cancer 
(NSCLC)

Recombinant TRAIL 
triggering apoptosis via 
activation of DR4 and DR5

A multi-center, open-label, 
randomized study

NCT00508625

Dulanermin Advanced non-small cell lung 
cancer

Recombinant TRAIL 
triggering apoptosis via 
activation of DR4 and DR5

A randomized, double-
blind, placebo-controlled 
study

NCT03083743

Trail derivates and modifications
MSCTRAIL Non-small cell lung cancer 

(NSCLC)
Targeted stem cells 
expressing TRAIL

Multicentre, randomized 
double-blind placebo-
controlled

NCT03298763

increase specificity in carcinoma targeting. Engineering of 
different such formulations.71 
Formulations enhancing stability
The first problem that hindered the bioavailability in TRAIL 
monotherapy was the unstable nature of the molecule. 
This issue was addressed by engineering various moieties 
along with TRAIL or recombinant TRAIL or TRAIL-R 
antibodies over the years. The first TRAIL recombinant 

was however not to enhance stability but to facilitate the 
purification process, it was the THD or TNF homology 
domain bound with poly-histidine at the N-terminus of the 
amino acid chain, termed as His-TRAIL68 and the second 
recombination was a short octapeptide, having a sequence 
of DYKDDDDK, also called as FLAG tag bound at the same 
site,92 singularly it showed poor activity but when tagged 
with M2 antibodies. It indicated high efficacy in in-vitro 
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TRAIL type Combined molecule Formulation type Ref.
TRAIL homotrimer leucin zipper Chimera, recombinant TRAIL 97

TRAIL homotrimer Iso-Leucine zipper motif Chimera, recombinant TRAIL 93

Iso-leucine TRAIL recombinant PEG conjugated with TRAIL Poly lactic-co-glycolic acid sustained-release 
microspheres

98

single-chain TRAIL-receptor-binding 
domain (scTRAIL-RBD)

Fusion with ImmunoglobulinG1 Fusion Protein 99

Soluble TRAIL FN-14 peptide Fusion soluble protein chimera 100

Bioactive TRAIL Lipid TRAIL-coated Lipid NPs 101

Apo2L.0 / Dulenermin PEG Synthetic lipid bilayer nanospheres/liposomes 102

sTRAIL PEG Coated stealth liposome 103

Table 2. Formulations of TRAIL to enhance stability.

and in non-human models but it has high hepatocellular 
cytotoxic activity when tested against isolated human 
liver cells that limited the use of macromolecule tagged 
TRAIL recombinant forms. To date, the only approved 
recombinant TRAIL molecule is dulanermin of Apo2L.0 
which is an untagged soluble residue of TRAIL containing 
amino acids from 114 to 281.12 Dulanermin even though 
it was taken to clinal trials, showed a significant amount 
of issues with stability and bioavailability, including 
distribution T1/2 of about 3-5 minutes and elimination of 
half T1/2 of an estimated 20 minutes.12 

Addressing these issues, several strategies have been 
followed over time for formulations, such as the addition 
of a trimerization motif to enhance stability at the N 
terminus of the chain. Creation of single chain TRAIL 
(scTRAIL), the strategy behind this is to form the 
TRAIL by translation of a single sequence of side-by-side 
extracellular TRAIL domains which are then ligated in a 
head-to-tail coupling manner with linkers in between the 
domains. This not only created a highly stable trimer but 
also reduced hepatotoxicity was observed, surprisingly 
some of the resistant tumors against dulanermin also was 
inhibited by this approach.12,93,94 The third strategy for 
improving stability is the linkage of known ligands such as 
human serum albumin or PEG.95,96   Details of formulations 
tackling stability issues are given in Table 2.

Formulations enhancing targeting
Most of the primary malignancies are TRAIL resistance 
and chemotherapeutic drugs are not tumor-specific, these 
two problems together gave rise to targeted chemotherapy 
with TRAIL. Chemotherapeutic drugs enhanced TRAIL 
sensitization in malignant cells where the TRAIL provided 
the agents a specified target, therefor conjugation of TRAIL 
or TRAIL-R antibodies along with chemotherapeutic 
drugs in a nanomedicine format opened a new era of 
target-specific cancer therapy for different malignancies. 
2 major targeting modes have been pursued in this case, 
they are actively targeting, where fragments of biological 
macromolecules are used to target TRAIL towards the 
specific tumor by using the surface proteins as antigens, 

and passive targeting based on enhanced permeability and 
retention (EPR) effect. 

Active targeting of TRAIL
Active targeting approach is defined as, the utilization of 
TRAIL as the apoptosis-inducing agent by combining it 
with biological macromolecules or motifs that can target 
specifically the tumor of interest. In this regard the first 
candidate that comes into mind are antibodies, but the large 
molecular weight of whole immunoglobulins (150KDa) 
increases steric hindrance, therefore, making them less 
than useful when it comes to conjugation with TRAIL, this 
was the point that single-chain variable fragment (scFv) 
of immunoglobulins that have the same targeting profile 
in 1/6th of the size of the full immunoglobulin (25KDa) 
that facilitates in easy fusion with biological molecules 
like TRAIL. Molecules such as “melanoma-associated 
chondroitin sulfate proteoglycan” or MCSP, CD19, etc. are 
examples of such fusion drug deliveries.104,105

Fn14 is the receptor for TNF-related weak inducer of 
apoptosis (TWEAK) or Apo3L, a fusion of peptides that 
correspond to the extracellular part of the receptor Fn14 
with TRAIL is another approach of engineering of the 
delivery system of TRAIL with active targeting.106 The 
formulations used for active targeting of TRAIL in CRC 
are summarized in Table 3.

MicroRNAs (miRNA) are often found dysregulated 
in cancers, especially in TRAIL resistance cell lines. 
Another approach to achieving synergy and increasing 
the effectiveness of TRAIL in those cancers includes 
combination therapy of miRNA with TRAIL. miRNA-128 
(miR-128) is a specific miRNA that has been seen to 
be under-expressed in the case of colorectal cancers. 
Under-expression of miR-128 causes over-expression 
of SIRT1, SIRT1 is a cellular histone deacetylate. SIRT1 
overexpression increases the expression of superoxide 
dismutase, thereby reducing the ROS (reactive oxygen 
species) stress and hence promoting growth in cancer cells 
by suppression of apoptosis. The combination treatment 
of miR-128 with TRAIL provided a balance in depleted 
miR-128, which resulted in downregulation of SIRT1, 
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further increasing ROS stress and at last, leading to DR5 
overexpression, thus even the TRAIL resistance cancer cell 
lines could be targeted, and apoptosis could be induced by 
TRAIL, miR-128 combination therapy112 another active 
targeting approach was TRAIL combined with a muc2 
inhibitor, Akkermansia muciniphilia is a natural intestinal 
microbiota that helps in degrading mucin by inhibiting 
Muc2, a main component of mucin by its proteolytic 
enzymatic action. It has been seen that colorectal cancer 
cells overexpress mucin, thereby creating a sheath of 
protective coat around them which helps them thrive.113-115 
The only known protease enzyme capable of degrading 
the core Muc2 identified till now known as Amuc_1434* 
is a recombinant version of the original enzyme.116 As the 
immunity of the cell lines is also negatively linked with 
p53 genes, which have been found to have a proportional 
link to Muc2,76,117 and also a failure of apoptosis is one of 
the leading causes of conversion of adenoma to carcinoma 
in CRC,118,119 therefore, treatment with Amuc_1434* has 
shown to increase apoptosis through TRAIL-mediated 
caspases pathway in even the resistance cases of CRC.120

Passive targeting of TRAIL
Passive targeting of TRAIL is when TRAIL itself is used 
as the targeting agent coupled with chemotherapeutic 
agents in a delivery form of nanoparticles like liposomes. 
Other delivery systems like micelles and microspheres 
are also explored in this process, passive targeting with 
nanoformulations has the distinct advantage of using an 
EPR mechanism to easily penetrate the tumor and having 
a high retention time as well, particles that possess a size 
of around 10-150 nm have this added advantage. PEG and 
HSA are added in these formulations for extra stability and 
ease of surface modification. Passive targeting has been the 
most popular approach for researchers in CRC.

TRAIL nanoformulations conjugated with other 
anticancer medications or small molecules, even 
microRNAs, and in a few cases coupled with radiotherapy 
are gaining an increasing amount of popularity for specific 
targeting ability using TRAIL and improved action against 
both nonresistant and resistant malignancies. Iron oxide 
cluster-based nanoparticles have improved significantly the 
antitumor activity of TRAIL/Apo2L, which was confirmed 
in both TRAIL-resistant HT-29, intermediately resistant 

SW-480, and sensitive HCT-116 cells.121

Jo et al.122 showed reactive oxygen species modulator-1 
(Romo1) to be an effective sensitizer for TRAIL, increasing 
its half-life in patients with Colorectal cancer, it was seen 
that Romo1 inhibition induces TRAIL-mediated apoptosis. 
Utilizing passive targeting drug delivery for treatment 
of CRC using TRAIL.122 A drug delivery combination of 
TRAIL and RUNX3 (RUNT-related transcription factor 3) 
was developed by Kim et al.123 and RUNX3 overexpression 
markedly reduced the transcription of superoxide 
dismutase, thereby increasing the production of reactive 
oxygen species, which led to an increase in DR5 receptors. 
It confirmed a reduction in tumor growth in colorectal 
cancer xenografted mice.

Another TRAIL combination therapy was evaluated of 
cannabidiol, which is a non-psychotomimetic compound 
obtained from Cannabis sativa can enhance the effect of 
TRAIL in inducing apoptosis in colon cancer, in xenografted 
mice. However, this synergy did not show any effect on 
normal colon cells. It was suggested that this synergy is 
due to the enhancement of ER stress by the cannabidiol, 
upregulating the DR5 receptor and sensitizing the cells 
for TRAIL.124 The combination of TRAIL with Diallyl 
Disulfide (DADS) boosts the apoptosis-inducing activity 
of TRAIL even if the resistance species of colorectal cancer 
cell lines. DADS is a major component of the oil obtained 
by the distillation of garlic. When treated with only DADS 
cell lines of colorectal cancer showed a slower growth rate, 
however, in combination with the TRAIL, it was seen to be 
enhancing the cytotoxic activity even if resistant cell lines. 
This action is due to the downregulation of the BCL2 gene 
and the initiation of caspases by DADS. Therefore, it caused 
the degradation of PARP (Poly – ADP Ribose Polymerase), 
leading to the inability of the cells to repair any damage. 
Which may increase stress and thus enhance the sensitivity 
of TRAIL for the colorectal cancer cell lines.125

Trametinib, an anticancer drug that acts by MEK1 
and MEK2 (mitogen induced protein kinase) enzymes 
and is used for the treatment of melanoma, thyroid, and 
lung cancers was co-administered along with TRAIL for 
colorectal cancer and the results were rather promising. 
This study suggested that Trametinib and TRAIL showed 
very high synergistic activity in cell viability study against 
HCT116 cell lines. It was found that this synergistic activity 

Table 3. Formulations aimed to enhance TRAIL action by active targeting of CRC.

TRAIL type Combined molecule Formulation type Reference
PEG-TRAIL Chondroitin sulfate PLGA nanoparticles 107

PEG-TRAIL Doxorubicin PLGA microspheres 108

TRAIL PEGylated heparin (PEG-HE) and po-
ly-l-lysin

Sustained release PEG nanoparticles 109

TRAIL The single-chain anti-EGFR antibody 
fragment

Immunoliposomes 110

Recombinant soluble TRAIL Antibodies Glass-supported lipid bilayer/ lipid 
bilayer liposomes

102

Single-chain recombinant TRAIL Anti-EGFR antibody fragments Dimer fusion protein 111
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is due to the suppression the of MCL1 protein, which is 
coded by the MCL1 (myeloid cell leukemia 1) gene, a pro-
survival member of the BCL2 family of genes. When MCL1 
is overexpressed that affects TRAIL-induced apoptosis 
but the treatment comprising TRAIL/Trametinib showed 
enhanced apoptosis and reduced growth.126

Farnesoid X Receptor, when activated causes the 
suppression of autophagy in tumor cells. Autophagy is the 
process by which a cell removes or digests its damaged 
organelles. Reduction or inhibition in autophagy leads 
to increased expression of death receptors. It was seen 
that GW4064, a ligand with a particular aim to show 
agonistic activity on Farnesoid X Receptors (FXR) can 
greatly potentiate the activity of TRAIL molecules on 
colorectal cell lines. This synergistic activity is the result 
of the upregulation of the DR5 receptors and thereby 
can be useful in the treatment of colorectal cancers with 
TRAIL resistance.127 In a more recent study, Joshua et.al 
produced “super natural killer cells” where NK cell-
targeted liposomes are fused with TRAIL using thiolation 
and CD 335 antibodies that showed higher activity against 
oxaliplatin resistant CRC,128 TRAIL gene have also been 
used as a therapeutic agent via infection mode, Jung et.al, 
showed that the Newcastle disease virus (NDV) containing 
TRAIL can effectively enhance apoptosis in TRAIL-
resistant CRC as NDV is known to upregulate death 
receptors in CRC, rNDV-TRAIL showed higher efficacy 
than that of only rNDV89  Few more formulation strategies, 
that are used in passive targeting are mentioned in Table 4. 

As both active and passive targeting play a pivotal role 
in the TRAIL formulation, conjugated systems, and their 
corresponding mechanisms are illustrated in Figure 5.

Conclusion
As seen in this study, despite of emergence of various 
TRAIL resistance mechanisms, the way by which TRAIL 
shows selectivity and induces apoptosis is still a major 
field of interest in anti-cancer therapy. TRAIL from being 
used as a therapeutic agent is now proven to be an even 
more efficient biomarker or an adjuvant to other cancer 
drug therapy. It is clear that molecules that can enhance 
cytoplasmic free radical concentration, could initiate the 

expression of TRAIL receptors (DR4 and DR5) thereby 
overcoming the resistance to TRAIL, and showing a 
synergistic cytotoxic action. TRAIL can add an edge to 
conventional chemotherapy and radiotherapy by being 
an active synergistic agent. However, the administration 
of TRAIL alone is not an advantageous way of handling 
cancer, but it can be a successful biomarker. Future of the 
cell-specific cancer treatment can go to the path of using 
TRAIL molecule as a conjugate to the active moiety, just to 
reduce dosage and increase specificity. 

The studies covered in this article showed TRAIL actions 
can be enhanced by natural anticancer drugs such as 
cannabidiol, Codium fragile extract, DADS from garlic oil 
and etc. It was also used in combination with miRNAs, 
and rAD-TRAIL adenovirus. TRAIL apoptotic action can 
even be enhanced by conjugating it with novel synthetic 
molecules such as GW4064, Romo 1 inhibitors, CBUD and  
etc. This clearly shows the huge diversity of compatibility of 
TRAIL for both co-administration as well as conjugation, 
which in turn can be marked by how wide of an approach 
this particular path of treatment might have in store for the 
future of specified cancer chemotherapy.

There have been significant numbers of clinical trials 
that involved TRAIL in different types of carcinogenesis, 
both directly and indirectly, singularly as well as in 
combination. Such as the ones that are mentioned above in 
Table 1, apart from that, TRAIL sensitization using drugs 
like Bortezomib and then treatment with NK cells have 
also been tested for chronic myeloid leukemia (CML)

This being discussed, we can conclude that TRAIL might 
be like a process that we only understand on its surface, 
there is a lot of depth yet to explore. Not only for colorectal 
cancer but TRAIL can be successfully incorporated for 
all the different types of carcinomas. The future may lie 
modification of TRAIL, semisynthetic TRAIL, or maybe 
even chemically synthesized TRAIL analogs. The future 
aim for this approach should be creating a molecule 
capable of targeted delivery and activation of death 
receptors with minimum binding with healthy cells and 
possible resistance, then that could be incorporated into 
various types of dosage forms containing conventional 
chemotherapeutic agents, SiRNA, or even phytomedicines 

Table 4. Formulations of TRAIL enhancing efficacy by passive targeting of CRC.

TRAIL type Combined molecule Formulation type Ref.
sTRAIL Quercetin Lipid Raft 129

Recombinant sTRAIL TRVP1 antagonist capsazepine Conjugation 130

Plasmid encoding 
TRAIL

Doxorubicin Polyamidoamine dendrimer modified with cho-
lesteryl chloroformate

131

Gene coding TRAIL Oncolytic adenovirus encoding gene PZD55 
joined with PCA13 gene containing TRAIL code

Targeted oncolytic adenovirus with TRAIL 132

sTRAIL Receptor binding domain of SARS-CoV-2 spike 
protein

Lipid nanoparticle 133

sTRAIL Imatinib Liposomes (150nm) 134

TRAIL mRNA - Ionizable lipid nanoparticles 135
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to open a low cost, effective, targeted, rapid and site-specific 
treatment of carcinomas.
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