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Abstract
Trisomy 21 is the most prevalent aneuploidy disorder among live-born children worldwide. It 
results from the presence of an extra copy of chromosome 21 which leads to a wide spectrum of 
pathophysiological abnormalities and intellectual disabilities. Nevertheless human chromosome 
21 (HSA21) possess protein non-coding regions where HAS-21 derived-microRNA genes are 
transcribed from. In turn, these HSA21-derived miRNAs curb protein translation of several 
genes which are essential to meet memory and cognitive abilities. From the genetics and 
molecular biology standpoints, dissecting the mechanistic relationship between DS pathology/
symptoms and five chromosome 21-encoded miRNAs including miR-99a, let-7c, miR-125b-2, 
miR-155 and miR-802 seems pivotal for unraveling novel therapeutic targets. Recently, 
several studies have successfully carried out small molecule inhibition of miRNAs function, 
maturation, and biogenesis. One might assume in the case of DS trisomy, the pharmacological 
inhibition of these five overexpressed miRNAs might open new avenues for amelioration of the 
DS symptoms and complications. In this review, we primarily elucidated the role of HSA21-
encoded miRNAs in the DS pathology which in turn introduced and addressed important 
therapeutic targets. Moreover, we reviewed relevant pharmaceutical efforts that based their 
goals on inhibition of these pathological miRNAs at their different biogenesis steps. We have 
also discussed the challenges that undermine and question the reliability of miRNAs as none-
invasive biomarkers in prenatal diagnosis.
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Introduction
Down syndrome (DS) was recognized by John Langdon 
Down for the first time in 1866 and around one decade 
later, it was ascribed to existing of an extra copy of human 
chromosome 21 (HSA21).1,2 HSA21(21q), as the 
smallest human chromosome, was reported to 
contain approximately 700 genes. The overexpression of 
some of these genes are the well-recognized culprits of DS 
pathology.3 The size of the extra copy can range from 3-4 
Kb to the whole chromosome 21.4 Depending on the size 
of the extra copy, the trisomy can be categorized into three 
groups including complete trisomy, microtrisomy and 
partial trisomy. This survivable congenital chromosomal 
abnormality originates from the failure of chromosome 
pairs to separate appropriately through the cell division. 
This genetic d isorder occasionally happens during the 

meiotic division I and II. In particular the maternal 
parent cells are more prone to this event.5-7 Additionally, 
the increasing DS incidence rate were found to be 
correlated with the maternal age.1 DS is the most prevalent 
genetic malady among diseases in which phenotypes are 
accompanied with intellectual disability. It affects 0.1% 
and 0.14% of live-births in the EU and the United States, 
respectively.8-11 According to the clinical observations 
that addressed manifestations in DS, DS symptoms and 
complications resemble the pathological hallmarks of cell 
senescence. Epigenetic factors like DNA methylation and 
miRNA silencing were discovered to contribute to DS onset 
or progression.12 The miRNAs with broad distribution can 
be found in both plant and animal kingdoms.13 They serve 
predominantly as negative regulators of protein expression 
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through base-pair interactions with the target mRNA. 
Strikingly, each miRNA can simultaneously downregulate 
several protein expressions and eventually modulate 
multiple signaling pathways. Their significant roles in the 
pathophysiological process of neurodegenerative disorders, 
various types of cancers, inflammatory abnormalities, 
cardiovascular diseases, and so forth are extensively 
uncovered.14 One of the understudied and overlooked 
factors in delineating pathophysiological alterations in 
DS is the Chromosome 21-encoded miRNAs, in which 
triplication and overexpression have been deemed to in 
part contribute to progress or onset of DS.15,16 we shed 
lights on biological mechanisms and related signaling 
through which chromosome 21-encoded miRNAs 
including miR-99a, let-7c, miR-125b-2, miR-155, miR-802 
impart to onset and progression of DS symptoms. In the 
light of the fact that HSA21-encoded miRNAs meet the 
criteria as putative therapeutic targets in DS pathology, we 
brought up and debated the advantages and the drawbacks 
of miRNA-targeted drug discovery. Encapsulated miRNAs 
in exosomes circulating in extracellular medium can be 
detected in a highly sensitive manner within multitude 
of tissues; we reviewed and discussed the prenatal DS 
diagnostic studies based on biological HSA-21-encoded 
miRNA analysis.

Down Syndrome
Since the chromosomal anomaly results in DS phenotypes, 
the “gene-dosage” hypothesis gains value. The “gene-
dosage” hypothesis claims that 50% increase in the 
expression level of the RNA transcripted from trisomic 
genes, imbalance in critical genes would take place and 
thus, DS phenotypes manifest.3,17-19 In contrast to with the 
“gene-dosage” hypothesis, the “amplified developmental 
instability” instability hypothesis argue that trisomy 21 
result from a nonspecific disturbance of chromosome 
balance.20 According to this hypothesis, the size of the 
triplicated chromosomal region is anticipated to correlate 
with the levels of cognitive malfunctions.21,22

However, the identification of full trisomy patients 
with milder intellectual disability casts doubts on this 
hypothesis.23 Toward a comprehensive understanding 
of the phenotype-genotype relationship in DS, nearly 80 
phenotypes were predicted to associate with DS.24,25

Bioinformatics studies have established that HSA21 
harbors five microRNA (miRNAs) genes.
Interestingly, the post-mortem dissections of DS brains 
have indicated the presence of extracellular plaques, 
made of Aβ protein. Aβ protein overexpression and 
their abnormal fibrillation and amylogenesis have been 
considered as hallmarks and the roots of the underlying 
neurodegenerative mechanisms in Alzheimer Diseases 
(AD). This phenotypic crosstalk has been ascribed to the fact 
that the amyloid precursor protein APP gene is located on 
the HSA21 chromosome in DS and AD. Previous findings 
on DS transgenic mouse models elucidated triplication of 
specific genes, like APP, leads to the disruption of nerve 

growth factor (NGF) axonal transportation in cholinergic 
neurons, located in basal forebrain to the hippocampus. 
The impaired cholinergic pathology in partial trisomy 
Ts65Dn model has been reversed and recovered when the 
extra copy of APP was genetically deleted from the HSA21 
chromosome, meaning the AD phenotypes associate and 
parallel the trisomy-centric DS pathology.24,26

The intracellular neurofibrillary tangles, containing 
hyperphosphorylated tau, are another hallmark of AD 
onset. The APP gene is not only AD pathology-associated 
gene that undergoes triplication in DS trisomy. The 
DYRK1A gene also lays on the HSA21 chromosome. Its 
gene triplication and protein overexpression influence 
alternative splicing of tau. Resultantly, it might eventually 
cause tau hyper phosphorylation. The DYRK1A-mediated 
tau priming for abnormal hyperphosphorylation can 
contribute to AD-like cognitive malfunctions in DS 
patients.27

Another important notion is the fact that the 
overexpression of the APP gene and other proteins which 
are involved in APP gene expression, post-translational 
regulation (SUMO3, DYRK1A, SNC27, and miR-155), 
and APP protein processing and clearance (PICALM, 
SORL1, BACE1, and BACE2) are considered to improve 
the association and deposition of amyloid beta (Aβ) 
plaques.28-32

Research shows that selective deactivation of HSA21-
derived miRNAs can be useful as a new therapeutic 
concept in the treatment of DS.
Additionally, due to the dysfunction of several 
neurotransmitter-based systems of DS patients including 
norepinephrine synapses at the locus coeruleus and 
serotonergic neurons of the raphe nuclei in the brainstem, 
therapeutic strategies based on the cytogenetic studies 
and mouse models are well-developed for further 
inquiries. So far, the Ts65Dn mouse model is widely 
employed for preclinical investigations purposes.33,34 The 
wider perspective on the impacts of the trisomy genes 
encoding proteins involved in ubiquitin signaling, signal 
transduction, immune response, and endosomal trafficking 
attracted many scientists to investigate these cellular 
mechanisms.33 Multitude of clinical trials with different 
modalities of interventions including, but not limited to, 
diets and physical exercise have been conducted. Although 
from the regulatory, clinical and translational standpoints, 
none of their interpretations have been able to repeatedly 
replicate the endpoint outcomes. This inconsistency within 
the context of the behavioral examinations was ascribed 
to the variability of the instrumental analytical tools, 
whereby the cognitive memory, learning, and language 
ability of individuals with DS are measured.35 As a result, 
devise and development of a validated instrument that 
could be readily operated for reproducible assessment of 
the cognitive and language skills in DS with different ages 
is the mantra. For instance, the Arizona Cognitive Test 
Battery (ACTB) was exclusively devised to examine the 
cognitive phenotypes in DS. It is made up of examinations 
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of overall cognitive ability in the context of hippocampal 
and cerebellar function and its cross-site usage, data-driven 
consistency, and precise phenotypic profiling. ACTB has 
been endorsed by a clinical trial where 74 DS participants 
and 50 mental age-matched controls were recruited.36 One 
potential future study would be to perform clinical trials 
on patients under 40 years old and to use DS patients as 
the target group for pre-clinical anti-AD drug therapy, as 
the rate of the incidence of the disease increases after the 
age of 40. 
To reduce clinical complications, selective inactivation 
of HSA21-derived miRNAs by the administration is a 
method in the treatment of DS. In vivo silencing of miR-
155 or -802 by antagomir intra-ventricular injection led to 
the normalization of appropriate miRNA, MeCP2, CREB1, 
and MEF2C expressions. These results suggest that the 
neurochemical abnormalities in the brains of DS persons 
may be resulted from the incorrect repression of MeCP2, 
secondary to trisomic overexpression of HSA21-derived 
miRNAs.37

Recent studies show the development of nanotechnology-
based delivery system, with the advancement of stem cell 
researches, and optimistically exploiting nanoparticles 
has become a central issue. Therefore, nano-formulated of 
HSA21-derived miRNAs could be a major factor improving 
the cognitive function of individuals with intellectual 
disability (ID) in DS in the near future.38

miRNAs from Biogenesis to Cellular Mechanisms of 
Diseases
The miRNAs are ∼21-nucleotide long, nonprotein-
coding RNAs. They play key roles in post-transcriptional 
modification through complementary-based silencing of 
the distinctive messenger RNAs (mRNAs).39 It has been 
reported that around 2000 miRNAs are present in the 
mammalian genome with conserved sequences and more 
interestingly, one-third of human genes are regulated by 
The biogenesis of miRNA starts with the step in which the 
RNA polymerase II transcribes miRNA genes and the pri-
miRNA is produced. The pri-miRNAs are huge transcripts, 
containing multiple miRNA sequences and they fold 
into hairpin structures. In the next step, the nuclear 
microprocessor, composed of the RNase III enzyme Drosha 
and the DGCR8 protein, converts the pri-miRNA into the 
pre-miRNA. After that, through involvement of exportin-5 
complex, the pre-miRNA is transported from the nucleus 
to the cytoplasm. The cytoplasmic endonuclease Dicer, 
in a complex with TAR RNA-binding protein (TRBP) 
and PKR-activating protein (PACT), cleaves the stem-
loop in the pre-miRNA. Then, the miRNA duplex is 
unwound and the passenger strand is degraded, while 
the mature miRNA is released. Upon this event silencing 
complex (RISC) containing Argonaute (AGO) protein 
is recruited to furnish base-pair match the mRNA and 
mature miRNA. If the miRNA and the target mRNA are 
exactly paired match or approximately complementary 
to each other, the target mRNA will be degraded and 
thus the target gene becomes silenced (Figure 1).24-26

Figure 1. The schematic illustration of the miRNA biogenesis from transcription to mature single-stranded form. The miR-155 gene 
positions in somewhere between the q21.2 and q21.3 on Chromosome 21. The polymerase enzyme transcribes the has-miRNA genes 
and produces the immature version of the miRNA as the pri-miRNA. Later, the Drosha and DGCR8 proteins using unique cleavage 
capability generate the pre-miRNA. Then, the exportin protein adheres to the pre-miRNA and conducts the loaded-complex through the 
nuclear pore into the cytosol. Once the complex enters the cytosol, the TRBP and Dicer proteins are recruited in order to remove the 
hairpin from the cytosolic pre-miRNA and produce the double-stranded form of the miRNA as the mature version. Eventually, the RISC 
complex distinguishes and separates the single-strand guide RNA from the other strand.
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An attractive aspect of miRNA genes results from their 
genome position. MiRNA genes might be found as a 
single unit or might be organized in gene clusters. The 
miRNA is an important regulator in biological processes, 
including development, adaptation to stress, and cell fate 
determination, proliferation, differentiation, immune 
reaction, apoptosis and hence their statue in the diabetes type 
1 and 2, diabetic retinopathy, microvascular complications, 
cancer, and kidney diseases were investigated.40-42

Roles of HSA21 miRNAs in Onset and Progression of 
DS
Based on bioinformatics annotations, it has been uncovered 
that chromosome 21 as the smallest human chromosome 
possesses at least five miRNA genes with the 1.5 ratios of 
transcription level. These miRNAs comprise miR-99a, let-
7c, miR-125b-2, miR-155 and miR-802.43 The abnormal 
expression levels of the miRNAs encoded from the HSA21 
in DS were found to correlate with symptoms onsets and in 
turn it may affect specific haploinsufficiency-related genes.44 
People with DS are more susceptible to AD owing to the 
copies of the chromosome 21 genes, like DYRK1A and 
APP. These copies cause the formation of amyloid beta)
Aβ( peptide and hyperphosphorylation of tau. DYRK1A 
localized to nucleus where it may interfere with tau splicing 
acts upon hyperphosphorylation of tau. In mice models of 
DS, tau pathology is related to overexpression of DYRK1A.
The literature has emphasized the importance of 
miRNAs to mitigate tau and Aβ pathology in DS. The 
association between miRNAs miR-17, -20a, -101, -106b, 
-199b, -26a, and 26b and some of their target mRNAs 
such as APP, DYRK1A, and BDNF, and the levels of  
hyperphosphorylated tau in the hippocampus mice model 
of trisomy 21 (Ts65Dn) have been studied. These results 
suggested that miR-17, -20a, -26a/b, -101, -106b, and -199b 
could be important components for decreasing tau and Aβ 
damage in DS.45

Prior studies have noted the importance of several 
miRNAs in adjusting synaptic plasticity. Regulation of 
synaptic function mediated by miRNA contributes to the 
pathophysiology of plasticity-related diseases, such as 
Alzheimer’s and frontotemporal dementia. Also it accounts 
synaptic activity. On the other hand, miRNAs play a key 
role in the pathogenesis of AD.46 They could affect Aβ 
metabolism in persons with DS, not only through action 
on 3’UTR of BACE1, ABCA1, APP and other related 
genes, but also through indirect regulation of other factors. 
Some evidence indicates that aberrantly expressed miRNAs 
such as let-7,47 miR-15548 have been caused by the changes 
of both Aβ formation and tau phosphorylation. These 
molecules increase in the brains of people with DS and are 
vital in the pathogenesis of AD.49,50   

It is believed miR-125b has been increased in AD and 
DS. In initial neurons, tau hyperphosphorylation and 
the upregulation of p35, cdk5, and p44/42-MAPK 
signaling are due to the overexpression of miR-125b. 
Tau hyperphosphorylation has been prompted by the 

Knockdown of phosphatases DUSP6 and PPP1CA and the 
anti-apoptotic factor Bcl-W. Together these results provide 
important insights into the role of these phosphatases 
mediating the effects of miR-125b on tau.51  

DNA polymerase beta and MeCP2 expression are 
downregulated by the miR-155.52 The miR-155 prohibits 
the complement factor H mRNA (CFH). Consequently the 
CFH decrease has been noticed in DS tissues. Neurons are 
protected from complement opsonization and leukocyte 
infiltration by the CFH in the brain parenchyma. So 
overexpression of miR-155 has been widely studied in 
the brain pathology of DS patients.53 Since miRNA-155 
targets angiotensin II type 1 receptor which was found 
to contribute to the cardiac pathology, the rate of 
cardiovascular disease among DS patients becomes about 
zero. In the DS mouse model Ts65Dn, miR-155 and miR-
802 were considerably more than control. Overexpression 
of these miRNAs has shown hippocampal deficits in DS 
phenotypes. Hippocampus are generating considerable 
interest in terms of learning, memory, and long-term 
synaptic plasticity.54 Overexpression of the miR-99a/
let-7c cluster was proposed to associate with congenital 
heart defects in DS.55 The miR125b-2 was demonstrated 
to be an oncogenic miRNA that contributes to acute 
megakaryoblastic leukemia (DS-AMKL) in children with 
trisomy.56 MiR-100, miR-125b, miR-335, miR-146, and 
miR-99a have been the most expressed miRNAs noted in 
pediatric acute myeloid leukemia (AML) patients.57

The solid tumor development in patients with DS is far less 
likely to occur and the reason arises from overexpression 
of miRNA let-7 and miR-99. The miRNA let-7 and miR-99 
inhibits the proliferation of breast and prostate cancer cells 
respectively58-60 (Table 1).

DS-Phenotype-Associating miRNAs Encoded from 
Other Chromosomes
It was demonstrated that four miRNAs from other 
chromosomes including miR-10b, miR-542-5p, miR-
654, and miR-615 were overexpressed in DS placentas.61 
However, their target genes on the chromosome 21 were 
unknown and another research contradicted these results. 
Lim et al. reported that miR-1973 and miR-3196 in the 
placenta of trisomy 21 were upregulated and accordingly, 
the regulation of genes contributing to the improvement of 
the nervous system was affected by this event. Additionally, 
another investigation on cord blood samples from normal 
and DS fetuses indicated the overexpression of three 
miRNAs including miR-27b, miR-27a, and miR-329 as 
well as over-translation of several proteins, for example, 
thymosin β10 and mitogen-activated protein. Depending 
on the tissues of interest as well as times of extracting bio-
sample, a variance in data is expected.62

Therapeutic Avenues Addressing HSA21-encoded 
miRNAs Crisis in DS Pathophysiology
Adopting the HSA21chromosme as a putative target has 
gained therapeutic values, in particular, when it comes to 
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Table 1. The HSA21-encoded miRNAs whose overexpression in trisomy contributes to the DS symptoms and complications.

miRNA Under-expressed mRNAs (genes) 
associating with DS pathophysiology Pathophysiological effects in DS complications Ref.

miR-155
Complement factor H mRNA The neuronal loss of protection against complete opsonization 

and leukocyte infiltration into the penumbra
52,53,54

Angiotensin II type 1 receptor Less cardiac pathology so that the rate of cardiovascular disease 
among DS patients become about zero

54

miRNA let-7 Protein Ezh2 Congenital heart defects in DS 55

miR-99a Nucleosome-remodeling factor Smarca5 Weakening Nodal/Smad2 signaling, DS fetal heart 55

miR-802 Ship1 (inositol phosphatase) Malfunctional hippocampal synaptic plasticity 54

miR-125b-2 DICER1, ST18 Acute megakaryoblastic leukemia (DS-AMKL) in pediatric DS 56

explore promising strategies for restoring the intellectual 
disabilities in DS patients. The precise and practical 
gene edition, offered by the CRISPR-Cas9 which could 
be genetically optimized to revise the DS-pathology-
relevant HSA21-encoded genes on the extra copy of 
the chromosme21, has been already hypothesized. This 
Hypothesis in the light of development of safe and blood-
brain barrier permeable nanoparticles on which, CRISPR-
Cas9 protein cocktails could be encapsulated, become 
more achievable.63

Pharmacological modulations of the HSA21-encoded 
miRNAs are anticipated to mitigate the translation of 
several under-expressed proteins. Modulation of the 
HSA21-encoded miRNAs are anticipated to mitigate 
the translation of several under-expressed proteins and 
thereby might lead to phenotypical recovery.64 The DS 
pathogenesis in part can be assumed to be dictated through 
the overexpression of several HSA21-encoded miRNAs. 
These set of miRNAs serves as key players in silencing 
several mutual or non-mutual target proteins through 
which important signaling pathways are modulated. 
Coding miR-155 and miR-125b, HSA21 has been thought 
of as a key factor in the immune response64,65 and an 
increase of their expression has been noted in the cells of 
DS persons. Farroni et al.66 reported the overexpression 
of miR-155 and miR-125b in tonsillar memory B cells. 
Remarkably, miR-125b was more than the expected amount 
in plasma cells. They noticed a significant reduction of 
activation-induced cytidine deaminase (AID) protein, a 
miR-155 target, in MBCs of tonsils of DS children. MiR-
155 and miR-125b were importantly overexpressed in 
PBMCs. They worked on the sorted cells and estimated the 
expression of miR-155 and miR-125b in them. Then their 
activity was hindered in culture with antagomiRs. Their 
study outlines that it is possible to modify the activity of 
miR by applying antagomiRs. Therefore, anatagomiRs have 
been identified as being pharmacological helpful tools in 
the treatment of DS.
A recent review of the literature found that the additional 
copy of chromosome 21 in Down’s syndrome leads to 
overexpression of miR-155. Thanks to this overexpression, 
C/EBPb is negatively adjusted and the production of 
sorting nexin 27 (SNX27) in the brain is decreased which 
causes synaptic dysfunction. SNX27 has been found to be a 

vital protein for memory and learning. The studies on miR-
155 finds that its inhibition upregulates SNX27 protein in 
the brain of Down’s syndrome mice and rescues cognitive 
and synaptic deficits. Thus memory could be returned.67

Another study reveals that miR-155 is crucially upregulated 
in DS brain. A decrease in the abundance of the miR-
155 mRNA affects the complement factor H (CFH), an 
important repressor of the innate immune response. 
Stressed primary human neuronal-glial cells show an 
increase in miR-155. Curiously, there is a significant 
correlation between miR-155 upregulation and CFH 
downregulation. One interesting finding is an anti-miR-155 
regulates miR-155 abundance resulting in returning CFH 
to homeostatic levels.68 
In a recent research, the Argonaute 2 (Ago2) protein which 
conducts silencing of the target mRNA was adopted as 
the therapeutic target.69 Following the virtual screening 
of the OTAVA_CNS_library against the miR-155/Ago2 
complex, a potent small molecule inhibitor was rationally 
selected.  Employing molecular dynamic simulations, the 
pharmacological activity of the selected small molecule 
under influence of virtual mutations including Thr526 to 
isoleucine and Gln545 to alanine was explored and found 
to fairly depending on the involvement of Thr526 and 
Gln545 in the first essential contacts between the miR-155 
and Ago2.69 Not only the function but also the maturation 
and biogenesis of the miR-155 can be regarded as feasible 
and approachable targets. 
For example, in one study driven revealing the binding 
and inhibition of pre-miRNA with few peptides and linear 
peptides (poly-N-substituted glycine), a diverse library 
made of combinatorial macrocyclic γ-AA-peptides was 
designed and synthesized.70 Then, this library against 
affinity binding to pre-miRNA, using the fluorescence 
polarization (FP) assay was screened. One potent candidate 
was chosen and the interaction between pre-miRNA and 
the ligand was endorsed through the performing gel-
electrophoresis.
Breast cancer cell lines MCF-7, which had been already 
proven to overexpress the miR-155. The pharmacological 
activity of candidate small molecules through the influence 
on the downstream regulations of miR-155 was examined 
while lacking alteration in expression of other miRNAs 
confer specificity to the candidate molecule.71 In another 



Mahernia et al.

307   | Pharmaceutical Sciences, 2021, 27(3), 302-312

team-work research, the cluster miRNA let-7c/99a/125b-2 
was suppressed through the androgen-induced repression 
of at the transcriptional level. Upon the androgen treatment, 
the androgen binds to the cluster host gene as a receptor 
and then polycomb protein EZH2 is recruited. After these 
events, the transcriptions of these miRNAs were repressed. 
This pharmacological discovery has laid groundwork for 
the translational scientists who are constantly seeking 
new targets with less off-site toxicity and more specificity. 
The curiosity to identify therapeutic targets in the 
nucleus where the miRNA biogenesis initiates through 
transcription of their gene may lead to more impactful 
phenotypic manifestation.72 However, in this research, the 
mentioned cluster posit on the different chromosomes 
rather than chromosome 21 and the androgen-androgen 
receptor complex needs to be deeply interrogated (Figure 
2).
Here we have explained the most recent and creative 
studies performed in this field where the small molecule 

Figure 2. The schematic representation of two pharmacological 
inhibitors and their mechanism of actions. (a) The transcription 
of the cluster let-7c/99a/125b-2 miRNAs on a non-HSA21 chro-
mosome is negatively repressed by androgen receptor agonists 
like dihydrotestosterone DHT (b) The pharmacological inhibition 
of Ago2/miR-155 complex which is the responsible machinery for 
the miRNAs function.

inhibition of the overexpressed miRNAs including the 
miR-155, let-7c, miR-99a, miR-125b-2 accompanied with 
the double-verified upregulation of downstream proteins 
were briefly discussed. Nevertheless, lacking both in-vitro 
and in-vivo pharmacological inhibition of these miRNAs 
on chromosome 21 whose mechanism of action are being 
tailored to a DS model, challenges the translatability of this 
approach.

Prenatal Diagnosis of DS
The American College of Obstetricians and Gynecologists 
suggest screening tests for pregnant women that regardless 
of their gestational age confer with the probability of 
carrying DS fetuses. These standard tests include the 
first trimester combined test, the integrated screening 
test and the cell-free fetal DNA analysis. The first test is 
the maternal blood level of pregnancy-associated plasma 
protein-A (PAPP-A) and human chorionic gonadotropin 
(HCG) while the second one is the ultrasound able to 
measure the specific area on the back of the fetus neck. 
Biological fluids including amniotic fluid, semen, milk, 
saliva, serum, plasma, urine and bronchial lavage contain 
extracellular nucleic acids including such as miRNAs.73 
The entrance of fetal miRNAs to maternal circulation 
(blood) is hypothetically justified by three mechanisms. 
The first one is cellular released exosomes,74 apoptotic 
bodies and microvesicles which contain waste materials 
and extracellular nucleic acids excreted out in a selective 
manner.75,76 
The second one is the inter-villous space that sustains 
the placenta with nutrients and oxygen and the third 
mechanistic hypothesis relies on the connection between 
placenta, mother and fetus.77 As the pathology of trisomy 
21 is attributed to the presence of an extra copy of HSA21 
harboring several DS pathology-associating miRNAs, 
one might envision on exploiting these overexpression 
patterns whereby, DS fetuses would be spotted and 
legally terminated.78,79 Furthermore, among extracellular 
nucleic acids, miRNAs tend to be more stable in maternal 
circulation,80 due to the resistance against various pH 
conditions and enzymatic degradation. Thereby these 
HSA21 miRNAs could constitute a potential biomarker for 
diagnosis of some diseases.81

Placenta-specific miRNA in maternal blood is detected by 
many methods including microarray, deep sequencing, 
and quantitative RT-PCR.74,82,83 Here we reviewed miRNAs 
as a non-invasive novel maternal biomarker for diagnosis 
of DS. In 2014 the microarray-based genome-wide 
expression profiling was undertaken in order to assess 
the expression of miRNA in maternal whole blood and 
placenta sample. Some other studies revealed maternal 
plasma levels of miR-99a and miR-3156 were significantly 
higher in pregnant women carrying DS affected fetuses.84 
Additionally, four upregulated HSA21-encoded miRNAs 
including miR-99a, Let-7c miR-125b-2, and miR-155 were 
significantly found to be higher in a pregnant woman 
compared to none-pregnant woman although they didn’t 
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differ between euploid and trisomy21 bearing pregnancies, 
therefore, they couldn’t be considered reliable biomarkers 
for none-invasive diagnosis of DS.85 Until now based on 
most of the clinical investigations, the HSA-21 encoded 
miRNAs cannot be perfect biomarkers for diagnosis of DS.

Conclusion
Down’s syndrome is a genetic disorder characterized by the 
presence of a third copy of chromosome 21. Given together, 
several HSA21-encoded miRNAs, including miR-155, miR-
125b-2, miR‑802, miR‑99, and let‑7c are overexpressed 
and they lead to underexpression of their specific target 
proteins whose physiological functions are essential in 
preventing/reversing DS complications. The miR-155 
is well-documented to associate with neuropathology. 
The miRNA-802 mediates the neuropathology, while the 
cluster composed of miR-99 and let-7c serve in the favor 
of congenital heart defects. The miR-99 and let-7c were 
also implicated in a low rate of solid tumor development, 
generally observed among DS patients.
Also, miRNAs in heart tissues from DS fetuses, displays 
miR-99a-5p, miR-155-5p, and let-7c-5p were significantly 
overexpressed in trisomic hearts. MiR-125b-2, let-7c, and 
miR-99a are the three HSA21-derived miRNAs which 
their orthologs were seen in the mouse inner ear. To reduce 
tau and Aβ damage in DS, MiRNAs-17, -20a, -26a/b, -101, 
-106b and -199b would be one of the major objectives. 
Studies have stressed the importance of several miRNAs in 
adjusting synaptic plasticity. MiRNA-mediated regulation 
of synaptic function is responsible for Alzheimer’s 
and frontotemporal dementia. The miR125b-2 was 
demonstrated to be an oncogenic miRNA contributing to 
acute megakaryoblastic leukemia (DS-AMKL) that affects 
children with trisomy.
One of the methods for the reduction of clinical 
complications is selective inactivation of HSA21-derived 
miRNAs by the administration of antagomiRs in the 
treatment of DS. Another way is using nanotechnology-
based delivery system.
From the experimental therapeutic standpoint, 
investments on the design, screening, and synthesis of 
the small molecules with the excellent potency to halt the 
HSA21-encoded miRNA overexpression are worthwhile. 
The pharmacological mechanism of action for these 
miRNA inhibitors could be classified based on the stage 
where the proposed small molecule binds to stage-specific 
RNA-binding protein complexes with miRNA or its 
precursors. Thereby we can conclude that in order of the 
normal biochemical events through which the miRNA 
becomes biologically functional, the initial transcription, 
biogenesis, maturation and eventually function of the 
miRNA are the target sites for therapeutic interventions. 
One noticeable challenge in the pharmacology of these 
classes of small molecules is their unpredictable specificity 
and accordingly, future outreach must take this hurdle into 
their accounts. So far, no pre-clinical DS model study has 
investigated the efficacy and safety of this niche of small 

molecules. Additionally, with insightful questions seeking 
the answer through the overlooked factors might finally 
establish precious translational and clinical breakthroughs 
regarding DS therapeutic and management.
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