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Abstract
Background: Prevention and management of type 2 diabetes mellitus (T2DM), as a major, non-
communicable disease with increasing prevalence, is one of the major human challenges. The 
aim of this systematic review is to summarize current studies about the potential roles of taurine 
in T2DM, to identify knowledge gaps and to provide recommendations for the way forward. 
Methods: The literature search was performed in PubMed, SCOPUS, Embase, ProQuest and 
Google Scholar electronic databases to December 2019. All studies investigating the impacts of 
taurine in T2DM which met the inclusion criteria were eligible. 
Results: Out of 1381 articles found in the search, 12 were included. Findings of taurine 
supplementation on glycemic control in T2DM showed improving effect of taurine on fasting 
and postprandial blood glucose, serum insulin level, insulin resistance, function of beta cells, 
and insulin sensitivity. But, the results for Hemoglobin A1c and homeostatic model assessment-
insulin resistance (HOMA-IR) were contradictory. Also, taurine reduced total cholesterol, TG, 
and low density lipoprotein-cholesterol (LDL-C) levels, however, the evidence on high density 
lipoprotein-cholesterol (HDL-C) was insufficient. Findings didn not support antioxidative role 
of taurine in T2DM. 
Conclusion: As a whole, taurine has potential to improve glycemic status and dyslipidemia. 
However, more clinical trials are needed to explore precise mechanisms underlying taurine 
on metabolic variables, oxidative stress, and inflammatory biomarkers, according to the 
recommendations for future directions.

Article  Info 

Article History:
Received: 29 December 2019
Accepted: 7 February 2020
ePublished: 20 September 2020

Keywords:
-Taurine
-Type 2 diabetes 
-Glycemic control 
-Lipid profile

Introduction
Diabetes mellitus is one of the major threats to human 
health in the 21st century.1 The prevalence of this disease 
is rising dramatically. The prevalence of this disease is 
estimated to be 439 million in 2030s and 642 million in 
2040s.2 Type 2 diabetes mellitus (T2DM), which accounts 
for approximately 85% of all diagnosed cases of diabetes, 
can be as a result of genetic predisposition, environmental 
risk factors or a combination of these two factors.3 In 
general, increased levels of inflammation and oxidative 
stress caused by chronic hyperglycemia play a central role 
in the pathogenesis of T2DM.4 Chronic hyperglycemia 
can cause macrovascular (such as coronary artery disease, 
peripheral vascular disease and cerebrovascular disease) 
and microvascular complications (including retinopathy, 
nephropathy and neuropathy).5 On the other hand, 
increased oxidative stress and proinflammatory factors are 
the most important factors to induce insulin resistance.6 
In general, insulin resistance, inflammation, and oxidative 

stress play a critical role in the pathogenesis of T2DM.7 
Nowadays, naturally occurring antioxidants are the focus 
of recent interest due to providing a protection against 
T2DM-induced cellular damage.8

Taurine (2-aminoutanosulfonic acid) is a sulfuric 
amino acid and the most abundant amino acid in the 
human body.9 In mammals, taurine is found almost 
abundantly in irritable tissues such as the brain, heart, 
eyes, platelets, secretory tissues, and the skeletal muscle.10 
Taurine is supplied both exogenously from the diet and 
endogenously from hepatic metabolism of methionine and 
cysteine.11 Taurine not only has regulatory role on osmotic 
pressure, cell membrane stabilization, bile salts synthesis, 
detoxification, and calcium homeostasis, but also acts as 
antioxidant, and anti-inflammatory agent.9,12-14 Serum 
levels of taurine decreases in oxidative stress-related 
diseases such as T2DM, metabolic syndrome and obesity.15 
Studies have shown that taurine has anti-obesity,16 
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antihypertensive,17 hypoglycemic,18 cholesterol-lowering,19 
anti-cancer.20 neuroprotective,21 and anti-atherosclerotic 
properties.22

The impact of taurine on type 1 diabetes has been well 
studied. Accordingly, taurine provides protection against 
metabolic disorders, oxidative stress, inflammation 
occurred in type 1 diabetes. However, T1DM may not 
necessarily reflect the pathologic processes that observed 
in T2DM. Hence, studies are needed to address specific 
effect of taurine on T2DM considering the molecular 
mechanisms. In spite of several studies that examined the 
effect of taurine supplementation on metabolic variables in 
T2DM, there is no systematic review report to summarize 
these effects and explain the directions for future studies.

Methods
Search strategy 
This study was designed based on Preferred Reporting 
Items for Systematic Reviews and  Meta-Analyses 
(PRISMA) protocol for reporting systematic reviews and 
meta-analyses.23 To find related studies, two researchers 
independently conducted an extensive systematic search 
in online databases in PubMed, SCOPUS, Embase, 
ProQuest, and Google Scholar using [MeSH keywords 
(“taurine”) and (“diabetes mellitus” or “type 2 diabetes” or 
“type II diabetes” or “type “noninsulin-dependent diabetes 
mellitus” or “NIDDM”)] and [(“taurine”) and non-MeSH 
keywords (“hyperglycemia” or “insulin secretion” or 
“diabetic” or “T2DM” or “fasting blood sugar” or “glycemic 
outcomes” or “fasting blood glucose” or “HOMA-IR” or 
“B-cell function”)]. There are no restrictions on the timing 
and type of studies in the search strategy. Only articles 
published in English language until December 2019 were 
included.

Inclusion and exclusion criteria
The titles and abstracts of studies in the online database 
were screened by two researchers independently based 
on inclusion and exclusion criteria. Inclusion criteria 
for eligible studies including: 1) all clinical trials studies 
on the effect of taurine supplementation on metabolic 
indices in patients with T2DM. 2) Observational studies 
that have evaluated the association between serum levels 
of taurine and metabolic indicators in patients with 
T2DM. 3) All animal studies have examined the effect of 
taurine supplementation on the metabolic variables in 
animal models of T2DM.24,25 In addition, In the current 
systematic review, we excluded letters, comments, short 
communication, abstracts, those conducted on pregnant 
and lactating women, and in vitro studies. In addition, 
reference lists of relevant studies were reviewed to prevent 
missing any publication. Additionally, duplicate citations 
were removed at the end of the search.

Data extraction 
In first, after receiving the full text of eligible studies, two 
investigators independently screened the articles. In the 

next step, the following information was extracted from 
each eligible study using a standardized data collection 
form and research question:26 first author’s name, year of 
publication, country of origin, type of study, methods or 
models, quantity and gender of participants, dosage and 
duration of the intervention, and main outcomes. Any 
disagreements between the researchers were resolved 
through discussion until consensus was reached. 

Results
Analysis of the data
Regarding potential roles of taurine on metabolic 
variables in T2DM, totally, we found 1381 publications 
by initial search strategy, among which 248 studies were 
duplicate and removed. Out of residual 1133 articles, 
1119 were identified as unrelated after rereading for titles 
and abstracts. When investigating full texts of articles, 
additional 2 studies were excluded because of insufficient 
information (i.e. letters, comments, short communication, 
conferences, congresses, and abstracts). Finally, 12 papers 
were selected for inclusion in this systematic review.27-38 
Currently, two clinical trials are also ongoing which their 
results have not been yet published.39,40 A flowchart of the 
process of studies selection has been summarized in Figure 
1.

Characteristics of the included studies
Of the 12 studies selected, 8 were conducted on animal 
models, 4 were based on human models (Table 1). Majority 
of the animal studies used spontaneous model of T2DM 
including Otsuka Long- Evans Tokushima fatty (OLETF) 
rats,28,30,31,33 GK rats,29 and ob/ob rats.34 Two studies 
induced diabetes by high fat and high sugar diet combined 
with streptozotocin (STZ)32 and feeding the genetically 
hyperglycemic KK mice a high calorie diet.27 Of the 8 
animal articles identified, 7 articles included measures of 
blood glucose,27-30,32-34 4 included measures of insulin,29-31,34 
and 6 evaluated lipid profile.28-30,32-34 oxidative stress indices 
were assessed by the selected animal studies.27,30 In 7 of 8 
animal studies, animals had received a diet supplemented 
with 1% to 5% taurine. The duration of the taurine 
supplementation varied from 7 days to 11 months. Of 
two studies with case-control design, only one evaluated 
the association between plasma taurine levels with FBG, 
insulin in T2DM patients.38 Hemoglobin (Hb) A1c was 
measured in both case-control studies.36,38 Two included 
trials used 1.5 g and 3 g for 3 months and 4 months, 
respectively.35,37 The primary outcomes measured in trials 
were related to glycemic response and oxidative stress.

Overview of taurine 
Taurine (IUPAC name: 2-aminoethanesulfonic acid, 
chemical formula: NH2CH2CH2SO3H) is a semi-
essential β-sulphonated amino acid containing a sulfonic 
group instead of carboxylic group and an amino group 
that synthesized predominantly in the liver through 
cysteine sulfinic acid pathway.41 Hypotaurine, as an 
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intermediate in the biosynthesis of taurine, is formed 
following dioxygenation of cysteine to cysteine sulfinic 
acid by cysteine dioxygenase and the decarboxylation 
of cysteine sulfinic acid catalyzed by sulfinoalanine 
decarboxylase.42 Ultimately, hypotaurine dehydrogenase 
allows the oxidation of hypotaurine to taurine.42 In spite 
of endogenous biosynthesis (50-125 mg/day in adults), 
taurine should be mainly supplied via dietary intake.43,44 
As a whole in mammals, the balance between de-novo-
synthesis of taurine, dietary intake, renal reabsorption, and 
excretion as taurine-conjugated bile acid and unconjugated 
taurine in urine determines total taurine pool10. Seafood 
such as shellfish, especially scallops, mussels, and clams 
presents the highest content but red meat as well as dark 
meat of turkey and chicken is the major dietary sources of 
taurine.45 Taurine is absorbed through mammalian small 
intestine by mediating Na+- and Cl--dependent, transporter 
TauT and the H+-coupled, pH dependent transporter 
PAT1,10 the latter appears to play principal role in the high 
blood levels of taurine following a taurine-rich meal.46 In 
a healthy person, brain, heart, and muscles are the main 
taurine storage sites. Taurine is also high in the liver, lungs, 
kidney, salivary glands, bone, and testis.47 While taurine 
distribution modifies under diabetic conditions resulting 
from selectively impaired transport of taurine.41

Biological activities of taurine
Taurine has been shown to target a variety of processes, 
such as neuroprotection, osmoregulation, retina 
function, immunomodulation, hepatoprotection, bile salt 

formation, and atherosclerosis.14,48 Accumulating evidence 
demonstrates that antioxidant and anti-inflammatory 
properties of taurine are involved in the protective impact 
of taurine on the various conditions.42 Taurine induces 
antioxidant effects via several mechanisms. First, taurine 
directly interacts with reactive hypochlorous acid to form 
taurine chloramine, which is a more stable compound 
than hypochlorous acid.49 Second, decreased levels of 
taurine reduce complex I activity because of suppressing 
the biosynthesis of specific mitochondrial proteins, such as 
NADH-ubiquinone oxidoreductase chain 6 as a subunit of 
complex I. The reduction in complex I activity decreases 
oxidation rate of NADH by the respiratory chain leading to 
overproduction of superoxide. Therefore, taurine is capable 
of decreasing superoxide formation and subsequent 
oxidative stress.50,51 Third, taurine could normalize the 
activities of antioxidant enzymes.52 Taurine could also 
suppress inflammatory responses through forming taurine 
chloramine.53 Taurine chloramine was shown to inhibit 
activity of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κβ) and to suppress gene expression 
of nitric oxide, IL-6, IL-8, TNF-α, and prostaglandin E2.54,55 
Antioxidative and anti-inflammatory effects of taurine also 
caused its hypoglycemic impacts.56 Other mechanisms 
by which taurine regulated glycemic response include 
stimulation of insulin secretion and insulin-sensitizing 
action. Taurine increases insulin secretion via inhibition 
of ATP sensitive K+ channels.57,58 Insulin-sensitizing 
effect of taurine is also mediated through augmenting 
insulin receptor substrate (IRS)-1/2, tyrosine and 

Figure 1. Flow diagram of the literature search and study selection process.
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protein kinase B (Akt) serine phosphorylation levels.59,60 
Conjugation of taurine with bile acids forms taurocholic 
acid, taurodeoxycholic acid, taurolithocholic acid, and 
taurocheno- deoxycholic acid which are the major bile 
salt.61 Bile salts not only play principal role in the intestinal 
digestion and absorption of lipids, but also remove the 
cholesterol from the plasma.11 In addition to increasing 
fecal excretion of cholesterol, taurine increases the gene 
expression and activity of cholesterol 7α-hydroxylase, the 
regulatory enzyme in the conversion of cholesterol to bile 
acids, leading to increased conversion rate of cholesterol 
to bile acids, decreased arterial lipid accumulation and 
atherosclerotic lesions.62-64

Taurine and glycemic control in T2DM
Seven animal studies evaluated the responses of glycemic 
biomarkers, insulin levels or insulin resistance to taurine 
administration. In 3 of 7 studies that examined blood 
glucose levels in animal models, the supplementation 
with taurine was shown to decrease glucose levels.30,32,33 
According to Harada et al. (2004) the taurine-
supplemented diet (3% in drinking water) reduced 
postprandial blood glucose, and insulin resistance in rats 
with T2DM after 9 weeks, whereas no significant within 
and between groups changes were found following 9 or 21 
days of the same dosage of taurine.30 Borck et al. (2018) 
treated leptin-deficient obese mice with 5% taurine for 11 
months and reported significant improvement in insulin 
sensitivity, glucose tolerance and glycaemia.34 In addition, 
plasma and total islet insulin content as well as insulin 
release from isolated pancreatic islets were significantly 
decreased in response to taurine, after treatment with 
11.1 and 22.2 mM glucose, but not for 2.8 mM. However, 
the changes in fasting blood levels of glucose (FBG) and 
insulin were not significant. This result was consistent 
with the study by Nakaya et al. on T2DM rats that didn’t 
observe significant changes in serum levels of fasting 
and postprandial blood glucose following consumption 
of the same dosage of taurine for 9 months.28 In another 
study, supplementation of diabetic rats feeding a diet 
supplemented with 1% taurine for 10 weeks significantly 
increased glucose-stimulated insulin secretion.31 However, 
the authors didn’t assess glycemic status. Another animal 
study on diabetic rats supplemented with 2% taurine for 12 
weeks, showed significant decreases in FBG, postprandial 
glucose, homeostatic model assessment-insulin resistance 
(HOMA-IR)-IR, and leptin levels without significant 
changes in HbA1c, HOMA-β, adiponectin levels, and 
pancreatic beta cell mass.33 Results from another study by 
Lin et al. (2010) revealed a significant decrease in blood 
glucose levels following supplementation of diabetic rats 
with various dosages of taurine (0, 3.4, 2.6, and 2.1mg/kg) 
for 10 weeks.32

Two studies with case-control design have so far measured 
plasma levels of taurine in the patients with T2DM to 
recognize whether plasma taurine is associated with 
diabetes mellitus.36,38 The results of these studies revealed 

significantly lower plasma levels of taurine.18,65 In addition, 
De Luca et al. observed lower levels of platelet taurine 
uptake along with higher levels of platelet taurine release 
in diabetic patients compared to controls.36 The authors 
also reported a weakly significant correlation between 
plasma taurine and HbA1c levels, while, Sak et al. didn’t 
find significant association between plasma levels of 
taurine with FBG, HbA1c and insulin concentrations in 
the T2DM patients.38 In a clinical trial that evaluated anti-
hyperglycemic effects of taurine in T2DM patients, in spite 
of significant increase in level of whole blood taurine, no 
changes were seen after consumption of 3000 mg of taurine 
for 4 months.37 Currently, modulatory effect of taurine on 
glycemic status is investigating in one ongoing clinical 
trial with parallel design in which patients with T2DM are 
receiving either 3000 mg taurine or placebo for 8 weeks. 
Although, the results of this trial have not been published.40

Taurine and dyslipidemia in T2DM
We identified 6 of 8 animal studies examining anti-
dyslipideic effects of taurine. In a study conducted by 
Nakaya et al. (2000), the lowering effects of taurine on serum 
levels of triacylglycerol and cholesterol in the liver were 
observed in diabetic rats supplemented with 5% taurine 
for 9 weeks, with no considerable effect on serum levels 
of high density lipoprotein- cholesterol (HDL-C).28 Borck 
et al. (2018) examined similar dosage of taurine on leptin-
deficient obese mice for 11 months and observed significant 
reduction in plasma TG concentrations.34 Nishimura et al.  
(2002), treated diabetic rats feeding either a cholesterol-
free or cholesterol-enriched diet with 3% taurine for 21 or 
14d.29 In spites of significant increase in daily excretion of 
fecal bile acids, the authors reported significant increase in 
the plasma cholesterol and phospholipids concentrations 
in diabetic rats fed cholesterol-free diet after 14 days. The 
changes in triglyceride (TG) concentration, HDL-C level, 
very low density lipoprotein- cholesterol (VLDL)+low 
density lipoprotein- cholesterol (LDL-C) levels, and 
liver cholesterol concentrations were not significant.29 In 
contrary, 21 days’ treatment with taurine led to significant 
decrease in the plasma levels of cholesterol phospholipid, 
VLDL+LDL-C, and liver cholesterol concentration 
along with significant increase in HDL-C levels and 
daily excretion of fecal bile acids in diabetic rats fed high 
cholesterol diet, however, the changes in TG level were 
not significant.36 In another study, the intake of the same 
dosage of taurine for 9 weeks significantly reduced plasma 
levels of triacylglycerol.30 The results from Lin et al. (2010) 
in which diabetic rats received various dosages of taurine 
revealed significant reduction in serum levels of TG, and 
TC along with significant increase in HDL-C levels after 
10 weeks.32 Similarly, according to Kim et al. (2012), a diet 
supplemented with 2% taurine decreased serum levels 
of TG, TC, HDL-C, and LDL-C in diabetic rats after 12 
weeks.33 Besides, one ongoing clinical trial with parallel 
design has been registered in Iranian Registry of Clinical 
Trials in which anti-dyslipidemic effects of taurine are 
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Table 1. Characteristics of the included studies.

Type of study Author/date Source Model Results (Taurine group)

Animal

Lim et al./ 199827 South Korea 
Rats were divided into 4 groups as follows: normal control, T1DM, 
genetically hyperglycemic mice without diabetes, T2DM treated with 
5% taurine in drinking water for 7 days. 

–No significant changes in FBG.
–No significant changes in hepatic GPX activity of both T1DM and T2DM.
–Significant increase in islet GPX activity of T2DM.
–No significant changes in  glutathione S-transferase activity in T2DM.

Nakaya et al./ 200028 Japan Male rats with T2DM were fed a diet supplemented with 5% taurine 
or a non-supplemented control diet for 9 weeks

–Significant decrease in serum levels of TG and TC, total fat, and hepatic 
levels of TG and TC.
–No significant differences in serum levels of HDL-C, fasting and post-
prandial blood glucose.

Nishimura et al./ 200229 Japan
Diabetic rats were fed either a cholesterol-free or cholesterol-en-
riched diet supplemented with or without 3% taurine for 21 (experi-
ment1) or 14d (experiment2).

Experiment 1:
–Significant increase in TC concentrations.
–No significant changes in plasma glucose and insulin levels, TG, HDL-C 
level, VLDL+LDL-C levels, liver cholesterol concentration in diabetic rats 
fed cholesterol-free diet. 
Experiment 2:
–Significant decrease in the TC, VLDL+LDL-C, and liver cholesterol con-
centration in diabetic rats fed high cholesterol diet.
–Significant increase in HDL-C levels in diabetic rats fed high cholesterol 
diet.
–No significant changes in plasma glucose and insulin levels, and TG 
concentration in diabetic rats fed high cholesterol diet.

Harada et al./ 200430 Japan
Male rats with T2DM received a taurine-supplemented diet (3% in 
drinking water) or normal diet without taurine supplementation for 
9 weeks. 

–No significant changes serum insulin concentration.
–Significant increase in lipid oxidation rate.
–Significant decrease in postprandial blood glucose, insulin resistance, 
plasma concentration of TG, fasting and postprandial glucose oxidation 
rate.

Kim et al./ 200531 South Korea Diabetic rats were fed a diet supplemented with 1% taurine in drink-
ing water for 10 weeks.

–Significant increase in glucose-stimulated insulin secretion.
–Significant inhibition of glucose-induced KATP channel activity in beta 
cells. 

Lin et al./ 201032 China
High fat, high sugar diet combined with STZ injection were used to 
induce T2DM and then diabetic rats were supplemented with var-
ious dosages of taurine (0, 3.4, 2.6, and 2.1mg/kg) for 10 weeks. 

–Significant decrease in blood glucose level, TG, TC.
–Significant increase in HDL-C levels.

Kim et al./ 201233 South Korea Diabetic rats were fed a diet supplemented with 2% taurine or a 
non-supplemented control diet for 12 weeks.

–Significant decrease in FBG, postprandial glucose, HOMA-IR, Serum 
levels of TG, TC, HDL-C, and LDL-C.
–No significant differences in body weight, HbA1c, HOMA-β, pancreatic 
beta cell mass

Borck et al./ 201834 Brazil
Female leptin-deficient
obese mice were orally supplemented or not with 5% taurine for 11 
months

–Significant improvement in insulin sensitivity, glucose tolerance and gly-
caemia during the ipGTT test. 
–Significant decrease in plasma TG concentrations, total AMPK protein, 
insulin release from isolated pancreatic islets.
–No significant changes in body weight, FBG, fasting insulin, plasma TC 
levels, and hepatic protein content of AMPK, pAMPK/AMPK.
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Table 1 Continued.

Human

Franconi et al./ 199435 Italy Patients with insulin-dependent diabetes mellitus and non-insu-
lin-dependent diabetes mellitus received 1.5 g/day for 3 months. 

–Significant increase in taurine levels in both plasma and platelets only in 
insulin-dependent diabetes mellitus patients.
–Significant decrease in arachidonic acid- induced platelet aggregation 
only in insulin-dependent diabetes mellitus patients. 
–Significant reduction in the platelet aggregation only in platelet-rich plas-
ma obtained from insulin-dependent patients after addition of taurine in 
in vitro experiment.
–Significantly lower plasma and platelets levels of taurine were observed 
in insulin-dependent diabetic patients.
–Significantly lower platelets levels of taurine were observed in non-insu-
lin-dependent patients.

De Luca et al./ 200136 Italy
Thirty-eight patients with T2DM and 26 healthy control subjects 
were included in the study to evaluate plasma and platelet taurine 
content and fluxes.

–A weakly significant correlation between plasma taurine and HbA1C lev-
els in the diabetic patients.
–Significant decrease in platelet taurine uptake in diabetic patients in 
comparison to healthy controls.
–Significant increase in platelet taurine release in comparison to healthy 
controls.
–Significantly lower plasma and platelets levels of taurine were found in 
diabetic patients than controls.

Chauncey et al./ 200337 USA Thirty-two patients with T2DM received 3000 mg of taurine or pla-
cebo for 4 months.

–Significant increase in level of whole blood taurine.
–No significant changes in glucose, HbAlc, lipids, and insulin levels.
–No significant changes in oxidative stress.

Sak et al./ 201938 Turkey
Fifty-nine patients with T2DM, and 28 healthy control subjects were 
included in the study to evaluate plasma taurine levels and their 
relationship with diabetic complications.

–No significant correlation between taurine levels with FBG, HbA1c and 
insulin in the diabetic patients.

AMPK; AMP-activated protein kinase, FBG; fasting blood glucose, GPX; glutathione peroxidase, HbA1c; hemoglobin A1c, HDL-C; high density lipoprotein- cholesterol, HOMA-IR; homeostatic model as-
sessment-insulin resistance, ipGTT; intraperitoneal glucose tolerance test, LDL-C; low density lipoprotein-cholesterol, STZ; streptozotocin, TC; total cholesterol, T1DM; type 1 diabetes mellitus, T2DM; type 
2 diabetes mellitus, TG; triglyceride, VLDL; very low density lipoprotein-cholesterol. 

investigated in T2DM patients receiving 3000 mg taurine for 8 weeks.40

Taurine and oxidative stress in T2DM
Two studies addressed the effect of taurine on oxidative stress in diabetes mellitus.27,37 Lim 
et al. (1998) performed a study focusing on the effect of taurine on the oxidative stress, 
in diabetic rats.27 Supplementation with 5% taurine for 7 days significantly increased the 
activity of islet glutathione peroxidase (GPX) in the rats with T2DM, however, the changes 
in the activities of GPX and GSH S-transferase, hepatic malondialdehyde (MDA) levels 
and hydrogen peroxide formation were not significant.27 The results from the only clinical 
trial assessing antioxidative effects of taurine in T2DM that conducted by Chauncey et al. 
(2003), didn’t indicate significant changes in the oxidative stress.37 Currently, antioxidative 
effects of taurine are exploring through one ongoing clinical trial on T2DM patients 

receiving 3000 mg taurine for 8 weeks.44 On the other hands, another trial with a focus on 
the effect of taurine on advanced glycation end products (AGEs) and related receptors has 
been registered in Iranian Registry of Clinical Trials in which T2DM patients have been 
assigned to either taurine (3000 mg) or placebo groups for 8 weeks.39

Discussion
The results of this systematic review show that taurine supplementation in animal models 
of T2DM has potential to improve fasting 30,32,33 and postprandial blood glucose,30,33,34 
serum insulin levels,33,34 insulin resistance 30,33, function of beta cells,31,33 and insulin 
sensitivity.34 However, the results for other glycemic indexes such as HbA1c and HOMA-β 
were contradictory. Also, clinical trials on the effect of taurine on glycemic status were 
insufficient. Similarly, taurine supplementation suppressed hyperglycemia in T1DM 
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animals.66,67 However, the results of human studies on 
the glycemic consequences of taurine in T1DM were 
inconsistent.68-70 
Taurine supplementation in early life delays the onset of 
diabetes by increasing the normal β-cell viability and 
pancreatic islet cell numbers, reducing β cells apoptosis, 
and normalizing morphophysiology and secretory 
functions of pancreatic cells.71 Potential mechanisms 
by which taurine improves the function, viability, and 
morphology of beta-pancreatic cells in the insulin-
resistant animal models include upregulation of the gene 
expression of Maf-A, PDX-1 and GLUT-2, stimulation 
of KATP channel function, along with calcium channel 
activity and voltage sensitivity.58,72,73 The ability of 
taurine in increasing β-cell viability is mediated through 
downregulating proinflammatory agents such as NF-κB, 
TNF-α, and monocyte chemoattractant protein (MCP)-
1.15,74 It is well known that taurine induces glucose-mimetic 
effect in T1DM through preventing progressive declines 
in the number and the size of pancreatic islets.75,76 Also, 
taurine impedes hyperglycemia-induced stresses in animal 
models of T1DM, leading to decreased levels of diabetes 
complications and prolonged survival of animals.77 Other 
protective mechanism of taurine against hyperglycemia in 
T2DM include normalizing the alterations in the pancreatic 
islet mitochondria and preventing compensatory growth 
of β-cell mass as well as insulin hypersecretion during 
insulin-resistant state.78,79

In liver, taurine suppresses the enzymes involved in 
gluconeogenesis and increases the gene expression of 
glycogenesis enzymes and thereby decreases hepatic 
production of glucose.57,78 Also, taurine reduces the 
function of glucagon in the liver.80 Taurine also improves 
insulin sensitivity with increases in the expression of 
the UCP1 protein in the mitochondria of adipose tissue, 
ultimately leading to stimulation of white adipose tissue 
to brown one.81,82 In addition, taurine administration 
may be able to upregulate gene expression of peroxisome 
proliferator-activated receptors (PPAR)-α and PPARγ 
coactivator (PGC)-1α in white adipose tissue that 
involved in insulin sensitizing activity.83 In the muscle, 
taurine increases insulin sensitivity along with glucose 
uptake through stimulation of AMP-activated protein 
kinase (AMPK) pathway activity.34 Activation of AMPK 
enhances insulin signaling following the phosphorylation 
of phosphatidylinositol-3-kinase (PI3K) and Akt and 
incorporation of GLUT-4 into cell membrane.84,85

Dyslipidemia is one of the major complications of T2DM, 
which can increase the risk of cardiovascular disease in these 
patients.86,87 The results of this systematic review showed 
that taurine reduced total cholesterol (TC),32,33 TG,28,30,32-

34 and LDL-C levels,28,32,33 however the results for HDL-C 
were insufficient. Anti-dyslipidemic effect of taurine 
were mediated by several pathways. Taurine stimulates 
the activity of hepatic cholesterol 7 α-hydroxylase along 
with the synthesis of 3-hydroxy-3-methylglutaryl-CoA 
reductase and thereby enhances cholesterol catabolism 

into bile acids and hepatic LDL-C depletion.19 Also, there 
were significant decrease in hepatic cholesterol ester pool 
and significant increase in LDL-C receptors following 
taurine administration.16 Lowering effect of taurine on 
TG was mediated by phosphorylation of Akt, suppression 
of sterol regulatory element-binding protein (SREBP)-
1c and downregulation of enzymes involved in fatty acid 
synthesis.88

Oxidative stress plays a vital role in the pathogenesis and 
complications of T2DM.89 Several possible mechanisms 
have been suggested for the antioxidant activities of taurine. 
In general, taurine reduces oxidative stress by decreasing 
ROS production, scavenging ROS, and interfering with 
ROS activity.15 The main source of ROS in the cells is 
mitochondria, which is neutralized by the superoxide 
dismutase (SOD), catalase (CAT) and GPX enzymes after 
mitochondrial leakage.90,91 Increased levels of ROS results 
in destruction of pancreatic β cells, impaired insulin 
production,92 insulin resistance,93 and hyperglycemia.94 
Studies suggest that taurine suppresses the production and 
scavenging of superoxide in the mitochondria.95 Taurine 
interferes with cellular effects of ROS by increasing the 
activity of SOD,96,97 CAT65,98 and GPX27,98 enzymes. 
Regardless of the favorable antioxidant role of taurine in 
previous studies and its role in improving diabetes, no 
support has been verified in the T2DM. In contrary, the 
results from studies on T1DM provided evidence showing 
antioxidant activities of taurine.97,99,100 Collectively, taurine 
supplementation suppressed ROS production and ROS-
mediated apoptotic death of cells in STZ-treated animals 
by increasing the activity of antioxidant enzymes such as 
SOD and CAT along with downregulating the expression 
of cytochrome P450 2E1, as a potential source of ROS.97,99 
Therefore, further studies in this field appear to be needed 
in the future for more accurate results.

Knowledge gaps and recommendations for future 
directions
Adiponectin is an anti-inflammatory adipokine that 
improves insulin signaling in muscle and liver cells. Studies 
show that taurine can increase adiponectin levels.54,101,102 
This adipokine binds to receptor 1 (AdipoR1) in skeletal 
muscle and receptor 2 (AdipoR2) in the liver and activates 
the AMPK pathway. The AMPK pathway is the target of 
many drugs to control diabetes mellitus.103 One animal 
study reported stimulatory effect of taurine on AMPK in 
T2DM 34. Activation of AMPK has been found to regulate 
glucose hemostasis and insulin sensitivity by stimulating 
the β-oxidation of fatty acids.104 Tyrosine phosphorylation 
of IRS and following activation of AMPK and AKt in 
skeletal muscle cells improve mitochondrial function 
along with insulin signaling pathway and enhance GLUT4 
translocation to the cell surface and glucose uptake 103,105-112 
(Figure 2). 
In liver, activation of AMPK pathway upregulates gene 
expression of PGC-1α.113 Elevated levels of PGC-1α leads 
to upregulation of PPAR-α and downregulation of Acetyl-
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CoA carboxylase (ACC) and SREBP-1c gene.113 Reduced 
SREBP-1c, as a transcription factor regulating lipogenesis 
in the liver, leads to reduced lipogenesis.113,114 On the other 
hand, PGC-1α suppresses the expression of forkhead box 
protein O1 gene (FOXO-1) and then the GLUT-2, leading to 
reduced gluconeogenesis and increased glycogenesis.115-117  
In other words, PGC-1α regulates gluconeogenesis in the 
liver by binding to FoxO1 to control expression of key 
enzymes involved in the gluconeogenic pathway118 (Figure 
3). 
In addition, elevated levels of inflammatory cytokines 

upregulate NF-κB, inhibit AMPK and PGC-1α pathway and 
thereby induce dyslipidemia and hyperglycemia.119 Given 
to the beneficial effects of taurine on adiponectin levels 
and AMPK, evaluating the effect of taurine on adiponectin 
levels and the expression of genes involved in AMPK 
signaling may be recommended as a new perspective for 
future studies. Also, the present study showed that no 
human studies to date have examined the effects of taurine 
on oxidative stress indices and inflammatory biomarkers, 
so anti-inflammatory effect of taurine could be considered 
in future trials.

Figure 3. Possible mechanisms of the taurine potential roles on cell signaling pathways in hepatocyte in type 2 diabetes.

Figure 2. Possible mechanisms of the taurine potential roles on cell signaling pathways in skeletal muscle in type 2 diabetes.
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Production of AGEs following chronic hyperglycemia 
is one of the most important agents involved in the 
pathogenesis of T2DM complications (microvascular 
and macrovascular). Studies have shown that antioxidant 
compounds can suppress AGEs production.120 In animal 
models, taurine suppresses the production of AGEs,121,122 
so it is recommended that future studies investigate the 
effect of taurine on AGEs in patients with T2DM.

Conclusion
As a whole, the findings of this systematic review showed 
that taurine can improve glycemic indexes and lipid profile 
in T2DM, but further clinical trials are needed to confirm 
these results. In addition, studies around the effects of 
taurine on oxidative stress biomarkers were inadequate. 
It would be best to explore the precise mechanisms of the 
potential role of taurine in T2DM in future studies based 
on recommendations for future directions.
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