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Introduction 

One of the significant challenges in biorefinery is the use 

of alternative sources replaced to fossil fuel reserves.1,2 

Saccharides derived from lignocellulosic biomass are 

considered as abundant, cheap and renewable starting 

materials for chemicals and fuels.3 However, there are 

some barriers such as their high complexity and low 

solubility in traditional solvents that impede the efficient 

conversion of these materials.4 Recently, ionic liquids 

have been used as green solvents for pretreatment of 

lignocellulosic biomass.5 The studies show that ionic 

liquids can dissolve the main components of biomass or 

total.6,7 There are some advantages in pretreatment with 

ionic liquids compared to other methods.8 In pretreatment 

with ionic liquids, significantly shorter time is required 

for conversion of biomass to fermentable sugars. Also, 

production of inhibitors and the degradation of 

saccharides is less. Furthermore, relatively mild 

conditions are required for dissolution and hydrolysis 

reactions.8 Despite these numerous advantages, 

commercial utilization of ionic liquids is restricted due to 

problems such as the high price of ionic liquids, difficulty 

at recycling of pure ionic liquids and high viscosity of 

solutions. To overcome these problems, researchers 

suggested that aqueous ionic liquid solutions instead of 

pure ionic liquid can be utilized for biomass 

pretreatment.9-12 Fu et al.9 achieved a higher amount of 

fermentable saccharides when 50% ionic liquid was used 

compared to using pure ionic liquid under the similar 

conditions. Zhang et al.11 obtained 90% glucan 

digestibility using aqueous ionic liquid 1-butyl-3-

methylimidazolium chloride solutions when 10–30% 

water was used. 

Study of interactions between monomers of saccharides 

and ionic liquids in aqueous solution is essential to find 

the optimal conditions for converting saccharides. To 

achieve this goal, a systematic study of thermophysical 

properties is required. In this work, in continuation to our 

previous papers,13-20 the solubility values of galactose in 

aqueous ionic liquids, 1-butyl-3-methyl imidazolium 

bromide, [BMIm]Br, 1-hexyl-3-methyl imidazolium 

bromide, [HMIm]Br and  1-butyl-3-methylimidazolium 

chloride [BMIm]Cl have been measured at different ionic 

liquid mole fractions at T = (298.15  and 308.15) K using 

the gravimetric method. 

A B S T R A C T 

Background: Saccharides are considered as abundant, cheap and renewable starting 

materials for chemicals and fuels. Recently, ionic liquids have been used as green solvents 

for saccharides. The solubility values of galactose in aqueous ionic liquid solutions are not 

available. Thus, the main objective of this research was to determine the solubility of 

galactose in aqueous solutions containing ionic liquids, 1-butyl-3-methyl imidazolium 

bromide, [BMIm]Br, 1-butyl-3-methylimidazolium chloride [BMIm]Cl  and 1-hexyl-3-

methyl imidazolium bromide, [HMIm]Br at different mole fractions of ionic liquids at T = 

(298.15 and 308.15) K.  

Methods: In this study, the gravimetric method was used to measure the solubility of 

galactose in aqueous ionic liquids solutions.  

Results: The solubility values of galactose in water and aqueous ionic liquid solutions were 

correlated with the activity coefficient models of Wilson, NRTL, modified NRTL, NRF-

NRTL, and UNIQUAC.  

Conclusion: It was concluded that with increasing the mole fraction of ionic liquids, the 

solubility values of galactose decrease and in fact all of these ionic liquids show salting-

out effect on aqueous galactose solutions and this behavior is stronger in ionic liquid 1-

butyl-3-methylimidazolium chloride.  
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Table 1. Descriptions of the used Chemicals. 

Material Provenance CAS 
number 

Purity 
(mass fraction) 

Purification method Analysis method 

N-Methylimidazole Merck 616-47-7 >0.99 None  
1-Chlorobutane Merck 109-65-3 >0.99 None  
1-Bromobutane Merck 109-65-9 >0.99 None  
1-Bromohexane Merck 111-25-1 >0.99 None  
Ethyl acetate Merck 141-78-6 >0.99 None  
Galactose Merck 59-23-4 0.98 Dried in vacuum over P2O5 at room temperature  

[BMIm]Cl Synthesis  0.98 Rotary evaporator and dried under vacuum 1H NMR and FTIR 

[BMIm]Br Synthesis  0.98 Rotary evaporator and dried under vacuum 1H NMR and FTIR 

[HMIm]Br Synthesis  0.98 Rotary evaporator and dried under vacuum 1H NMR and FTIR 

 

To model the experimental solubility data of galactose in 

water and aqueous ionic liquid solutions, models such as 

Wilson,21 NRTL,22 modified NRTL,23 NRF-NRTL24 and 

UNIQUAC25 were used. In this study, the effects of anion 

type and chain length of ionic liquids on galactose - ionic 

liquid interactions have also been investigated.   

 

Materials and Methods 

Chemicals 

The provenance, CAS number, purity, purification and 

analysis method of the utilized chemicals are represented 

in Table 1. Galactose was dried in vacuum over P2O5 at 

room temperature for at least 72 h. For the preparation of 

solutions, freshly doubly distilled water was used. Mass 

fractions of water in the synthesized ionic liquids 1-butyl-

3-methyl imidazolium bromide, 1-hexyl-3-methyl 

imidazolium bromide, and 1-butyl-3-methylimidazolium 

chloride were 0.0034, 0.0050 and 0.0035, respectively. 

The water content was measured using a microprocessor 

based automatic Karl–Fischer Titrator and was 

considered in the preparation of the aqueous solutions.  

 

Synthesis of ionic liquids 

The ionic liquids, 1-butyl-3-methyl imidazolium 

bromide, [BMIm]Br , 1-hexyl-3-methyl imidazolium 

bromide, [HMIm]Br and 1-butyl-3-methylimidazolium 

chloride [BMIm]Clwere synthesized as described in the 

literature.26–28 The purity of the prepared ionic liquids in 

mass fraction is about 0.98. 1H NMR (Brucker Av-300, 

CDCl3) and FTIR (Perkin Elmer, Spectrum RXI) spectra 

for the investigated ionic liquids are shown in Figure S1-

S3 in the Supporting Information.  

 

Solubility measurement 

In this study, the gravimetric method was used to measure 

the solubility of galactose in aqueous ionic liquids 

solutions. To prepare the aqueous ionic liquid solutions, 

an analytical balance with a precision of 1 × 10-7 kg 

(Shimadzu, 321-34553, Shimadzu Co., Japan) was used. 

The excess amount of galactose required for saturation 

was added. Then sealed vials containing galactose in the 

aqueous ionic liquid solutions were mixed using a 

magnetic stirrer (Behdad, Tehran, Iran) and placed in a 

bath with a constant temperature using a temperature 

controller (Julabo, MB, Germany) with a standard 

uncertainty of 0.01 K for three days to reach equilibrium. 

When a saturated solution was reached, the solid phase 

was removed by centrifugation (D-7200 Tuttlingen, 

Hettich Co., America). The upper clear saturated solution 

was sampled using a syringe with a filter (Dura pore® 

membrane filters, type HV, 0.22 µm, Millipore, MA) and 

inserted into glass vessels, and immediately weighted. 

Then water of the solution was evaporated in a drying 

stove at 343.15 K for three days. To make sure that the 

weighed material did not contain water, a Karl Fisher 

titration on the solid residue was performed that show all 

of the water was completely removed in the drying oven. 

After the evaporation, the glass vessels with the samples 

were weighed. The solubility values of galactose in 

aqueous ionic liquid solutions were determined by the 

help of known initial ionic liquid concentration in the 

solution and the weight of the glass vessels in three 

conditions: (1) when they are empty, (2) with the 

saturated solution, and (3) with the dried sample. Each 

experimental data are represented as the average of three 

repetitive measurements.   

 

Result and Discussion 

Experimental result 

The experimental solubility values of galactose in water 

and aqueous ionic liquids [BMIm]Br, [HMIm]Br, and 

[BMIm]Cl solutions at different mole fractions of ionic 

liquids are reported in Tables 2 and 3 at T = (298.15 and 

308.15) K, respectively. The comparison of the obtained 

solubility values of galactose in pure water in this work 

with the literature29,30 shows a good consistency between 

our data and literature at studied temperatures. Table 2 

and 3 show that increase in the temperature from 298.15 

K to 308.15 K enhances the solubility which means 

dissolution process of galactose in pure water and 

aqueous ionic liquid solution is endothermic. In Figure 1 

and 2, the plot of solubility values of galactose in presence 

of studied ionic liquids at T = (298.15 and 308.15) K have 

been illustrated. According to these figures, in both 

temperatures, the solubility values decease by increasing 

the mole fraction of ionic liquids. This shows that 

interaction between galactose and investigated ionic 

liquids are unfavorable. In other words, these ionic liquids 

have a salting-out effect on aqueous galactose solutions. 

For three different ionic liquids considered in this study, 

our results show that the ionic liquid [BMIm]Cl has the 

strongest salting-out effect on aqueous galactose 

solutions. 

In this study, we have studied the role of anion and cation 

of ionic liquids on solubility of galactose. 
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Table 2. Experimental solubility data for galactose in water and 
aqueous ionic liquid [BMIm]Br, [HMIm]Br and  [BMIm]Cl solutions 
at T = 298.15 K and P ≈ 85 kPa.a,b 

xIL      xexp

 

[BMIm]Cl 
0.0000 0.0462  
0.0069 0.0438 
0.0104 0.0424 
0.0136 0.0414 
0.0205 0.0389 
[BMIm]Br 
0.0069 0.0440 
0.0103 0.0430 
0.0136 0.0418 
0.0203 0.0399 
[HMIm]Br 
0.0034 0.0455 
0.0068 0.0450 
0.0103 0.0444 
0.0135 0.0440 

a Standard uncertainties u for solubility, temperature and pressure 
are u (x) = 0.1, u (T) = 0.01 K, u (p) = 0.5 kPa, respectively. 
b Relative standard uncertainty ur for mole fraction of  ionic liquids 
is ur = 0.02. 

 
Table 3. Experimental solubility data for Galactose in water and 
aqueous ionic liquid, [BMIm]Br, [HMIm]Br and  [BMIm]Cl  
solutions at T = 308.15 K and P ≈ 85 kPa. a,b 

xIL

 
xexp

 

[BMIm]Cl 
0.0000 0.0553 
0.0036 0.0519 
0.0066 0.0493 
0.0105 0.0473 
0.0170 0.0446 
[BMIm]Br 
0.0032 0.0529 
0.0068 0.0509 
0.0101 0.0496 
0.0135 0.0479 
0.0170 0.0466 
0.0201 0.0455 
[HMIm]Br 
0.0067 0.0516 
0.0102 0.0501 
0.0135 0.0485 
0.0168 0.0473 
0.0202 0.0461 

a Standard uncertainties u for solubility, temperature and pressure 
are u (x) = 0.1, u (T) = 0.01 K, u (p) = 0.5 kPa, respectively. 
b Relative standard uncertainty ur for mole fraction of ionic liquids 
is ur = 0.02. 

 

To see the effect of cation on solid - liquid equilibrium 

behavior of galactose, we compare the solubility values in 

aqueous ionic liquids [HMIm]Br and [BMIm]Br 

solutions. These ionic liquids have the same anion and 

different alkyl chain of cations. Our results show that the 

solubility values in the presence of ionic liquid [HMIm]Br 

are greater than the corresponding values in the presence 

of ionic liquid [BMIm]Br at both temperatures. This can 

be discussed based on different hydration behavior of 

ionic liquids. In our previous studies15,16,19 we showed a 

higher affinity for water in ionic liquids having shorter 

alkyl chain. Our results showed that the activity 

coefficient values of ionic liquid [BMIm]Br in water are 

higher than the activity coefficient values of ionic liquid 

[HMIm]Br in water.15,16,19 

 

Figure 1.  Solubility of galactose (x) in aqueous ionic liquid 

solutions at T = 298.15 K: , [HMIm]Br; , [BMIm]Br;  ∆, 

[BMIm]Cl  - NRTL mode.l  .  
 

 

Figure 2.  Solubility of galactose (x) in aqueous ionic liquid 

solutions at T = 308.15 K: , [HMIm]Br; □, [BMIm]Br;  , 

[BMIm]Cl  -  mNRTL model  .  

 

It means that [BMIm]Br-water interactions are stronger 

than [HMIm]Br-water interactions.15,16,19 In ternary 

systems, it seems that ionic liquids with shorter alkyl 

chain have fewer tendencies to interact with galactose due 

to their higher tendency to interact with water. This 

behavior is consistent with the results obtained from 

vapor-liquid equilibrium behavior of {sucrose / fructose 

+ [BMIm]Br / [HMIm]Br + water} systems in regard with 

sugar-ionic liquid interactions.15,16 Our results are also 

consistent with the volumetric and viscometric results 

obtained by Shekaari and coworkers.31 They studied 

density and viscosity of ternary {D-xylose + ionic liquids 

1-hexyl-3-methyl imidazolium bromide or 1-octyl-3-

methyl imidazolium bromide or 1-decyl-3-

methylimidazoliume bromide + water} systems. Their 

results showed that the standard partial molar volumes (

) and the viscosity B-coefficient values increase as the 

alkyl chain length increases which indicate that when the 

chain length of ionic liquid increases, D-xylose-ionic 

liquid interactions become stronger.31 In other study, they 

showed that the standard partial molar volumes of glucose 

in presence of ionic liquid 1-hexyl-3-methyl imidazolium 

0
ΦV
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bromide have higher values in comparison to ionic liquid 

1-pentyl-3-methyl imidazolium bromide.32   

To see the effect of anion on solid - liquid equilibrium 

behavior of galactose, we compare the solubility values in 

the presence of ionic liquids [BMIm]Br and [BMIm]Cl. 

These ionic liquids have the same cation and different 

anions. Our results show that the solubility values in the 

presence of ionic liquid [BMIm]Br  are greater than the 

corresponding values in presence of ionic liquid 

[BMIm]Cl. In our previous study,19 we showed that an 

ionic liquid with smaller anion's size has stronger 

interaction with water than the ionic liquid with larger 

anion's size. Our results showed that the activity 

coefficient values of ionic liquid [BMIm]Cl in water are 

higher than the activity coefficient values of ionic liquid 

[BMIm]Br in water.19 It means that [BMIm]Cl-water 

interactions are stronger than [BMIm]Br-water 

interactions.19 The Gibbs energies of hydration for Cl- and 

Br- anions that are -340 kJ mol-1 and -315 kJ mol -1, 

respectively33 also fulfill this expectation. In ternary 

solution, Cl- anion in comparison to Br- anion due to 

higher hydration, shows less tendency to interact with 

galactose, therefore ionic liquid [BMIm]Cl has stronger 

salting-out effect on aqueous galactose solutions. The 

results obtained in this work are in agreement with those 

obtained by the Gibbs transfer energy values of fructose 

and sucrose in presence of ionic liquids 1-hexyl-3-methyl 

imidazolium bromide [HMIm]Br  and 1-hexyl-3-methyl 

imidazolium chloride [HMIm]Cl reported in ref.[19].  Our 

results are also consistent with Kazempour34 results in 

regard with the volumetric and viscometric properties of 

D-glucose in ternary aqueous solutions containing ionic 

liquids [HMIm]Br and [HMIm]Cl.  They showed that 

standard partial molar volumes and viscosity B-

coefficient values of D-glucose in presence of ionic liquid 

[HMIm]Br are higher compared with the corresponding 

values in presence of ionic liquid [HMIm]Cl which mean 

[HMIm]Br-glucose interactions are stronger than 

[HMIm]Cl-glucose interactions.34 

 

Correlation of experimental solubility by activity 

coefficient models 

For nonelectrolyte solutes, most thermodynamic models 

base the activity coefficient on the activity of hypothetical 

subcooled liquid solute, which is calculated using the 

enthalpy of fusion of the solute.35 In this article, another 

procedure is used for correlating the solubility data of 

sugar in water and in presence of ionic liquids. This 

method has already been used for modeling of solubility 

of amino acid in water and aqueous ionic liquid 

solutions.36,37 Here this is the first time that we evaluate 

the applicability of this procedure for modeling the 

solubility of a sugar in water and in presence of ionic 

liquids.  The more details of this procedure can be found 

in detail in the literature.37 

 

Thermodynamics of solubility of galactose in water 

Solid -liquid equilibrium of galactose in water is 

expressed as the following equation:                                                                                                                                                                                                                       

                                                           Eq. (1) 

In the above equation, Ks is the solubility constant in mole 

fraction scale.  xA and  are the mole fraction and 

activity coefficient of galactose in mole fraction scale, 

respectively. In this article, the following equation 

suggested by Chen22 is used to express the relation of 

solubility constant to the temperature: 

                                         Eq. (2) 

By equaling the equations 1 and 2, the following equation 

is obtained: 

                                    Eq. (3) 

where a, b and c are adjustable parameters and can be 

estimated by minimizing the following objective 

function: 

                                              Eq. (4) 

To determine the parameters a, b and c, the solubility data 

of galactose in water at different temperatures together 

with activity coefficient data are required. By inserting the 

binary energy parameters for galactose – water (obtained 

from correlating of water activity data reported in Ref. 

[38]) in the activity coefficient relation for each model, 

activity coefficient of galactose in any concentration is 

obtained. We used the solubility data for galactose in 

water within the temperature ranges from (298.15 to 

348.15) K29 and water activity data38 to get parameters a, 

b and c. The obtained fitting parameters and the absolute 

relative percentage deviations (Dev %) are reported in 

Table 4. By Dev% values, we conclude that all the local 

composition models utilized in this study can be 

successfully used for the modeling the solubility of 

galactose in water.  

 
Table 4. Solubility constants of galactose in water a 

Models a b c Dev% 
NRTL and mNRTL -303.839 11959.571 45.772 0.656 
NRF-NRTL -328.094 13059.156 49.381 0.756 
UNIQUAC -224.973 8642.210 33.879 0.475 
Wilson -269.773 10440.495 40.687 0.525 

a ,NP is the number of 

experimental data points. 

 

Thermodynamics of solubility of galactose in aqueous 

ionic liquid solution 

In solid–liqui d equilibrium, the solubility of sugar in an 

aqueous solution containing an electrolyte can be stated 

as:  

                                                 Eq.(5) 

where “bin” and “ter”  refer to binary and ternary systems, 

respectively. By equaling the   equations 3 and 5, the 

following equation is obtained: 

AAs γxK 

A
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T

b
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                                  Eq. (6) 

According to equation (6), the parameters a, b and c 

reported in Table 4 enable us to model solubility of 

galactose in aqueous ionic liquid solutions using an 

appropriate activity coefficient model for
 

. The 

required relation for activity coefficient of sugar in 

ternary solution is obtained by appropriate differentiation 

of the corresponding gex model. When the local 

composition models are used in the obtained activity 

coefficient relation, there are six parameters for each 

model. The binary sugar–water and ionic liquid –water 

interaction parameters are obtained by fitting the water 

activity data for these binary solutions to the 

corresponding relation for water activity. Galactose-ionic 

liquid parameters can be obtained from fitting of 

experimental solubility of galactose in ternary solutions.  

In this work, we used the water activity data of (D-

galactose + H2O) system taken from Refs. [38, 39] to get 

the sugar-water energy parameters at T = (298.15 and 

308.15) K. The water activity data for [HMIm]Br-H2O, 

[BMIm]Br-H2O and [BMIm]Cl-H2O systems taken from 

Refs.16,40-43 were used to get ionic liquid-water interaction 

parameters at T = (298.15 and 308.15) K.  In this work, 

for modeling of solubility of galactose in aqueous ionic 

liquid solutions, for the first time, activity coefficient 

models such as Wilson,21 NRTL,22 modified NRTL,23 

NRF-NRTL24 and UNIQUAC25 have been utilized. In our 

previous studies14-19, we found that the above models 

show good performance in modeling vapor-liquid 

equilibrium behavior for some (saccharide + ionic liquid 

+ water) systems. In this work, the capability of these 

models has been examined for modeling the solubility of 

galactose in aqueous solutions containing ionic liquids 1-

butyl-3-methyl imidazolium bromide, [BMIm]Br, 1-

hexyl-3-methyl imidazolium bromide, [HMIm]Br and  1-

butyl-3-methylimidazolium chloride [BMIm]Cl. 

 

Activity coefficient models for (saccharide + ionic liquid 

+ water) 

For modeling the solubility of galactose in aqueous ionic 

liquid solutions, a suitable activity coefficient model is 

required. This relation is derived from the corresponding 

excess Gibbs energy relation. Excess Gibbs energies of 

(saccharide + ionic liquid + water) systems have 

two contributions (long range and short range): 

                                         Eq.(7) 

In the above relation, the long-range (LR) and short-range 

(SR) interaction terms consider the electrostatic 

interactions between ions, and the non-electrostatic 

interactions between all species, respectively.  

In this work, excess Gibbs energy of the Pitzer-Debye 

Hückel (PDH) equation is used for considering the long-

range interaction term:44, 45 

      Eq. (8) 

where 

                    Eq. (9) 

The parameters, , NA , k,  and e represent the closest 

distance parameter, Avogadro’s number, Boltzmann 

constant, permitivity of vacuum and electronic charge, 

respectively.  is the mole fraction of component i. Ix is 

the ionic strength in mole fraction basis. For aqueous 

solutions  = 14.9 was chosen. The Vw and Dw are the 

molar volume and dielectric constant of the solvent.  

For short range contribution of , Wilson,21 

NRTL,22 modified NRTL,23 NRF-NRTL24 and 

UNIQUAC25 models have been considered.  

The  , in the Wilson model for (ionic liquid + sugar 

+ water) system
 
has the following form:21 

 

  

                                                                            Eq. (10a) 

 In the above equation, the subscripts w, m, ca, c and a 

denote water, sugar, electrolyte, cation and anion, 

respectively.  is the effective mole fraction: 

           

(   For ions and unity for molecules). 

                                                                             Eq.(10b) 

In equation (10a), C is the effective coordination number 

in the system equal to 10 in this work, Z is the charge 

number; H, h and E are energy parameters. 

    Eq. (10c) 

Eq. (10d) 

           Eq. (10e) 

    

                           Eq. (10f) 
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                                         Eq. (10g) 

In the above relations, species i, j and k are cation, anion, 

sugar or solvent molecule. 

 The NRTL model has also been used for modeling the 

solubility of galactose in presence of ionic liquids. In the 

NRTL model, , for ( ionic liquid + sugar + water) 

system is expressed as:22  

 

  

                                                                            Eq. (11a) 

where G and τ are energy parameters: 

                                                                           Eq.(11b) 

 

                               Eq. (11c) 

        Eq. (11d) 

              

                                                                            Eq. (11e) 

                                          Eq. (11f) 

where α is the nonrandomness factor. The values of α 

utilized in this study have been explained in the next 

sections. The performance of modified NRTL (mNRTL) 

model23 was also checked for modeling the solubility of 

galactose in (ionic liquid + water) systems. The modified 

NRTL model has been extended for the modeling of 

vapor–liquid equilibrium for (polymer + salt + water) 

systems.23 In our previous studies,14-17,19 we used this 

model for representing the vapor–liquid equilibrium of 

(ionic liquid + sugar + water) systems.
 

, in the 

mNRTL model for (ionic liquid + sugar + water) system 

is expressed in Eq. 12. 

In this work, for representing the solubility in these 

systems, we have also used NRF-NRTL model. This 

model has been presented for the correlation of vapor–

liquid equilibrium of (polymer–salt-water) systems.24 

This model takes the following form (Eq. 13) for (ionic 

liquid + sugar + water) systems. 

In this work, in order to obtain good performance of 

different version of NRTL models, the value of 0.4 was 

selected for the nonrandomness factor in galactose – 

water, [BMIm]Cl-water, [BMIm]Br-water and 

[HMIm]Br-water pairs at 298.15 K. For binary galactose 

-[BMIm]Br and galactose -[BMIm]Cl pairs at 298.15 K, 

the value of 0.1 was selected for α . However, the best 

quality of fitting in NRTL model was obtained when we 

choose nonrandomness factor for binary galactose -

[BMIm]Cl pair as 0.4. The nonrandomness factor for 

galactose -[HMIm]Br pair was fixed at 0.4 at 298.15 K. 

At 308.15 K, the nonrandomness factor for galactose – 

water and [HMIm]Br -water, pairs was set at 0.4. At this 

temperature, the value of 0.1 was selected   for [BMIm]Br 

–water and galactose -[BMIm]Cl. 

 

  

 

 

          Eq. (12)    
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                                          Eq. (13) 

 

In binary [BMIm]Cl-water pair, α was set at 0.01; 

however when we select it  as 0.4  in NRF-NRTL model, 

we get the best quality of fitting. In galactose-[BMIm]Br 

pair, in mNRTL, NRF-NRTL and NRTL models, we set 

α at 0.1,0.1 and 0.4, respectively. In galactose-[HMIm]Br 

pair, in mNRTL, NRF-NRTL and NRTL models α was 

fixed at 0.1, 0.1, and 0.01, respectively. 

The applicability of UNIQUAC activity coefficient model 

has also been examined in description of solubility of 

galactose in (ionic liquid + water) solutions. There are two 

terms for representation of the UNIQUAC group 

contribution model: a combinatorial (enthalpic) and a 

residual (entropic) term. In this work, the extended 

UNIQUAC model25 was used for phase equilibrium 

behavior of (galactose + ionic liquid + water) system. For 

any component i, the gex, SR  in UNIQUAC model equation 

has the following form: 
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                                                                            Eq. (14a) 

 

Segment fraction and area fractions , and  

(energy parameters) are given by: 

                                                     Eq. (14b) 

                                                      Eq. (14c) 

                                                          Eq. (14d) 

 

                       Eq. (14e) 

In the above equations, qi and q0i are relative molecular 

surface area. ri is relative molecular volume.  z is the 

coordination number in the system equal to 10. Basically, 

q0 is equal to q except for water and alcohols.25 These 

values obtained from the literature.46-48 For galactose, 

[BMIm]Br, [HMIm]Br and [BMIm]Cl, the values 5.8028, 

7.081, 8.897 and 5.467, respectively have been used for r. 

For galactose, [BMIm]Br, [HMIm]Br  and [BMIm]Cl,  

the values 4.84, 5.69, 7.613 and 4.574, respectively have 

been used for q. 

Table 5-10 enlist the parameters of the used activity 

coefficient models. The Dev % values of Wilson, NRTL, 

mNRTL, NRF-NRTL and UNIQUAC models obtained 

from fitting the solubility values of galactose in aqueous 

ionic liquid solutions show that all of these models can 

satisfactorily correlate the experimental solid-liquid 

equilibrium data for the studied systems at T = (298.15 

and 308.15) K. In (galactose + [BMIm]Cl + water) 

system, however,  higher Dev % values obtained with the 

Wilson , NRTL and UNIQUAC  models at T = 308.15 K, 

show the lower capability of these models in fitting 

solubility data at this temperature. 

Table 5. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for {galactose + [BMIm]Cl + H2O} 
system at T = 298.15 K. 

Wilson model 

Emw  Ewm  Eca,w  Ew,ca  Eca,m Em,ca Dev% 
7830.512 -11976.733 -29246.3846 59440.7568 1354.8166 42791.2902 0.130 
NRTL model 
τmw  τwm τca,w τw,ca  τca,m  τm,ca Dev% 
-0.4280 -3.4170 -2.4926 5.1090 -0.7964 4.9469 0.202 
mNRTL model 
τmw  τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4280 -3.4170 -2.0690 4.5422 -24.2182 -68.2670 0.154 
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Table 5 Continued. 

NRF model 
τmw  τwm τca,w τw,ca τca,m τm,ca Dev% 
2.9687 1.5783 -2.1144 4.6592 17.4370 4.3930 0.242 
UNIQUAC model 

         Dev% 

-589.504 -976.099 -58.910 -1719.797 203.161 2579.294 0.158 

 
 

Table 6. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for {galactose + [BMIm]Br + H2O} 
system at T = 298.15 K. 

Wilson model 

Emw Ewm Eca,w Ew,ca Eca,m Em,ca Dev% 
7830.512 -11976.733 -26894.939 56486.876 -22120.336 61442.588 0.094 
NRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4280 -3.4170 -1.9665 4.4867 -13.6427 14.9620 0.107 
mNRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4280 -3.4170 -1.2578 3.8446 6.6466 9.2711 0.141 
NRF model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
2.9687 1.5783 -1.1920 3.9386 90.0353 -92.4746 0.140 
UNIQUAC model 

      Dev% 

-589.504 -976.099 -1386.553 839.290 -913.128 2275.506 0.125 

 
 

Table 7. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for {galactose + [HMIm]Br + H2O} 
system at T = 298.15 K. 

Wilson model 

Emw Ewm Eca,w Ew,ca Eca,m Em,ca Dev% 
7830.512 -11976.733 -28446.636 62546.044 -37886.179 174388.281 0.105 
NRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4280 -3.4170 -2.0103 5.1629 -14.4910 27.9530 0.150 
mNRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4280 -3.4170 -1.3039 4.6594 12117.9910 17.5540 0.171 
NRF model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
2.9687 1.5783 -1.1180 4.7132 2.8699 17.0324 0.210 
UNIQUAC model 

      Dev% 

-589.504 -976.099 -1481.013 1481.013 -2898.024 42972.558 0.135 

 
 

Table 8. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for { galactose + [BMIm]Cl  + H2O} 
system at T = 308.15 K. 

Wilson model 

Emw Ewm Eca,w Ew,ca Eca,m Em,ca Dev% 
3875.762 -8292.044 5359.556 -38540.023 49783.136 375340.002 1.960 
NRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 3.3867 -11.9226 -24.2844 198.3691 2.133 
mNRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 -12.2252 45.9306 -24.2581 -65.7513 0.358 
NRF model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
1.961 0.386 4.568 3.165 17.479 -55.475 0.275 
UNIQUAC model 

      Dev% 

-726.348 -797.139 -339.295 -1786.27 -364.782 33045.433 1.584 
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Table 9. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for { galactose + [BMIm]Br + H2O} 
system at T = 308.15 K. 

Wilson model 

Emw Ewm Eca,w Ew,ca Eca,m Em,ca Dev% 
3875.762 -8292.044 -28485.383 60632.884 -30067.281 490936.580 0.847 
NRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 -2.1700 5.0587 -94.8137 362.6702 0.484 
mNRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 1.9404 16.4121 -22.2702 -71.8715 0.513 
NRF model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
1.96120 0.38563 -31.1782 98.4555 0.0846 104.9152 0.425 
UNIQUAC model 

      Dev% 

-726.348 -797.139 -1105.204 398.097 37988.914 -647.043 1.285 

 
 

Table 10. Values of parameters of Wilson, NRTL, mNRTL, NRF- NRTL and UNIQUAC models (Jmol-1) for {galactose + [HMIm]Br + H2O} 
system at T = 308.15 K. 

Wilson model 

Emw Ewm Eca,w Ew,ca Eca,m Em,ca Dev% 
3875.762 -8292.044 -31060.259 70290.832 -33726.431 504238.979 0.458 
NRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 -2.2682 6.0798 -48.4281 549.7495 0.256 
mNRTL model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
-0.4019 -3.2930 -1.8609 5.9007 -20.9121 -53.1965 0.289 
NRF model 
τmw τwm τca,w τw,ca τca,m τm,ca Dev% 
1.9612 0.3856 -1.7407 5.9007 51.6855 -61.3089 0.180 
UNIQUAC model 

      Dev% 

-726.348 -797.139 7845.7564 -1958.1397 125663.263 3414.046 1.055 

 

In Figure 3-8, we have depicted the difference between 

experimental and calculated solubility data obtained from 

different models for these systems to see the 

performances of all the models used in this work.   

 

 

Figure 3. Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid 

[BMIm]Cl; , NRTL model;  , Wilson model; , mNRTL model; ∆, 
NRF- NRTL model; □, UNIQUAC model at T = 298.15 K. 
 

According to these figures, small differences between 

experimental and calculated solubility data indicate the 

good performances of the above local composition 

models considered in this work in representing solubility 

of galactose in ( ionic liquid + water) solutions. Reported 

parameters in Table 5-10, enable us to calculate the 

solubility of galactose in aqueous ionic liquid solutions at 

T = (298.15 and 308.15) K with different models. These 

values are presented in Table S1-S6. 
 

 

Figure 4. Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid 

[BMIm]Br; , NRTL model;  , Wilson model; ∆, mNRTL model; 
∆ ,NRF- NRTL model; , UNIQUAC model at T = 298.15 K. 

mwu wmu wcau , cawu , mcau , camu ,

mwu wmu wcau , cawu , mcau , camu ,
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Figure 5. Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid 

[HMIm]Br; , NRTL model;  , Wilson model; ∆, mNRTL model; -
,NRF- NRTL model; , UNIQUAC model at T = 298.15 K. 
 

 

Figure 6.  Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid 

[BMIm]Cl; , NRTL model;  , Wilson model; ∆, mNRTL model; , 
NRF- NRTL model; -,UNIQUAC model at T = 308.15 K. 
 

 

Figure 7.  Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid 

[BMIm]Br; , NRTL model;  , Wilson model; -; mNRTL model; 

∆,NRF- NRTL model ; ,UNIQUAC model at T = 308.15 K. 
 

 
Figure 8. Plot of the difference between the experimental and 
calculated solubility values, against mole fraction of ionic liquid  

[HMIm]Br; , NRTL model;  , Wilson model; , mNRTL model; 
, NRF- NRTL model; □,UNIQUAC model at T = 308.15 K. 
 

Conclusion 

The solubility of galactose in aqueous solutions 

containing ionic liquids, 1-butyl-3-methyl imidazolium 

bromide, [BMIm]Br, 1-hexyl-3-methyl imidazolium 

bromide, [HMIm]Br and  1-butyl-3-methylimidazolium 

chloride [BMIm]Cl has been measured at different  ionic 

liquids mole fractions at T = (298.15  and 308.15) K using 

the gravimetric method. To model the experimental 

solubility data, the activity coefficient models of Wilson, 

NRTL, modified NRTL, NRF-NRTL and UNIQUAC 

were utilized. The results show that all of these models 

can be successfully used to model the solubility of 

galactose in aqueous ionic liquids solutions. However, in 

(galactose + [BMIm]Cl + water) system,  higher Dev % 

values obtained with the Wilson , NRTL and UNIQUAC 

models at T =308.15 K, show the lower capability of these 

models in fitting solubility data at this temperature. The 

experimental solubility data obtained in this work show 

that with increasing the mole fraction of ionic liquids, the 

solubility values of galactose decrease and in fact the 

studied ionic liquids have a salting-out effect on aqueous 

galactose solutions at T = (298.15 and 308.15) K. Our 

results for three different ionic liquids considered in this 

study show that ionic liquid [BMIm]Cl has the strongest 

salting-out effect in comparison to other studied ionic 

liquids which is due to its high tendency to interact with 

water. 
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