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Introduction 

Pulmonary fibrosis is described as a chronic idiopathic 

inflammatory disease of the interstitial lungs. It is 

associated with a potentially fatal prognosis, and patients 

often show insignificant response to treatment.1,2 

Nevertheless, the pathophysiology of this disease remains 

undetermined. The lower-airway accumulation of 

activated inflammatory cells is assumed to produce 

dangerous quantities of reactive oxygen species (ROS), 

leading to lung damage.  

The content of the extracellular matrix is increased by 

activated fibroblasts, which in turn destroys the normal 

structure of the lungs and decreases vital gas exchange.3,4 

A studied model of fibrogenesis is experimental paraquat 

(PQ)-induced lung fibrosis, which has been endorsed by 

many studies.5-8 This pulmonary fibrosis model is similar 

to the model in humans, assessing the potential effects of 

therapeutic agents. PQ, as a quaternary nitrogen 

herbicide, is used for controlling broadleaf weed 

worldwide. The molecular mechanism of PQ toxicity is 

not completely understood, making it difficult to treat 

toxicities of the central nervous system, kidneys, heart, 

and liver. However, pulmonary fibrosis and lung damage 

are recognized as the most common causes of mortality 

and injury.9-13 

In the mid 1950’s, allopurinol (Allo) was synthesized for 

the production of new antineoplastic agents. 

Nevertheless, its inhibitory effects on xanthine oxidase 

(XO) were reported, reducing both serum uric acid and 

urinary contents.14 In 1966, the Food and Drug 

Administration approved Allo for gout treatment. 

Administration of this drug remains the most effective 

approach for primary and secondary hyperuricemia.15 

Allo is recognized as a competitive inhibitor and a 

substrate for XO enzymes at low concentrations, while it 

is a noncompetitive inhibitor at higher concentrations.  

A B S T R A C T 

Background: Pulmonary fibrosis is described as a chronic idiopathic inflammatory disease 

of the interstitial lungs. It is associated with a potentially fatal prognosis, and patients show 

insignificant response to treatment. To treat paraquat (PQ)-induced pulmonary injury and 

fibrosis, multiple approaches have been used. We aimed to determine the effects of 

allopurinol (Allo), a xanthine oxidase inhibitor, on PQ-induced pulmonary fibrosis in rats.  

Methods: A total of 30 female Sprague-Dawley rats were divided randomly into five 

groups (200±20 g). Group 1 (control) and group 2 (PQ group) were intraperitoneally 

administered PQ  (20 mg/kg) once on day seven without any treatment, while groups 3–5 

orally received 50, 100, and 200 mg/kg of Allo seven days before and three weeks 

following the administration of PQ, respectively. The animals were sacrificed three weeks 

after PQ administration. For the histopathological analysis and assessment of serum 

malondialdehyde (MDA) and hydroxyproline (HP) contents, the animals’ blood and lungs 

were collected. 

Results: The PQ group showed significantly higher lung HP, serum MDA, and lung index 

in comparison with the control. Treatment with Allo, especially at 100 and 200 mg/kg, 

decreased HP, MDA, and lung index significantly, compared to the PQ group. Allo could 

prevent inflammatory cell infiltration, presence of fibroblasts, and PQ-related alveolar 

thickening. 

Conclusion: The results revealed that Allo has potential protective effects on PQ-related 

pulmonary fibrosis, and the role of xanthine oxidase in the exacerbation of PQ-induced 

pulmonary fibrosis was confirmed. 
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Figure 1. The experimental protocol of the study. Female rats were pretreated with 50, 100, and 200 mg/kg of Allo or normal saline orally 
seven days before and three weeks after the administration of PQ. PQ or normal saline was administered on day one at a single dose 
intraperitoneally (i.p.).  

 

Its formation, besides its long persistence in tissues, 

largely accounts for its pharmacological activity.  

Furthermore, it has been reported that XO inhibition 

exerts antioxidant properties.16 The XO enzyme forms 

superoxide (O2
●-) and hydrogen peroxide (H2O2), which 

is majorly involved in chronic heart failure, different 

inflammatory diseases, and vascular and tissue damage.17-

20 In animal models, as well as small-scale clinical trials 

in humans, Allo has exhibited positive therapeutic effects. 

XO-derived ROS has been introduced as a mediator of 

proinflammatory gene expression and inflammatory 

signal transduction pathways.16 Therefore, this study 

examined the effects of Allo on the fibrogenic activity of 

PQ in a pulmonary fibrosis model. 

 

Materials and Methods 

Chemicals 

Jalinous Pharmaceutical Company (Tehran, Iran) 

provided Allo in this study. Sigma–Aldrich Co. (St. 

Louis, MO, USA) supplied PQ (methyl viologen), 

thiobarbituric acid (TBA), chloramine T, trichloro acetic 

acid (TCA), L-hydroxyproline (HP), dimethyl 

benzaldehyde, and tetraethoxypropane (TEP). All other 

chemicals were of an analytical grade. 

 

Animals 
The animal house of Ahvaz Jundishapur University of 

Medical Sciences (AJUMS) provided 30 female eight-

week-old Sprague–Dawley rats (200±20 g), which were 

kept in a 12:12 h light-dark cycle inside polypropylene 

cages with free access to standard rat chow and drinking 

water under controlled temperature (20±2˚C). In our 

study, the procedures for animals were in line with the 

guidelines of AJUMS Animal Ethics Committee. 

 

Experimental design 

After randomly dividing the animals into five 

experimental groups (six per group), they were treated as 

follows: group 1 (control); group 2 (PQ group), PQ (20 

mg/kg/5 ml in normal saline, i.p.); and groups 3–5, oral 

administration of 50, 100, and 200 mg/kg of Allo, 

respectively seven days before and three weeks after PQ 

administration.2 (Figure 1) 

Sample Collection 

Xylazine (10 mg/kg), as well as ketamine (90 mg/kg), was 

used to anesthetize the rats at the end of the experiment 

(day 28). Blood samples from the jugular vein were 

collected. After isolating, weighing, and washing the 

lungs with saline rapidly, centrifugation was carried out 

to separate the serum at 3000 rpm for 10 minutes; then, it 

was stored at -80ºC until further analysis.  

 

MDA assay 

MDA reaction with TBA was measured to determine lipid 

peroxidation, as explained by Esterbauer and 

Cheeseman.21 Briefly, after mixing the serum sample (0.5 

mL) with TCA (2.5 mL; 10% w/v) and centrifuging for 

10 minutes at 3000 rpm, 2 mL of the supernatant was 

added to the test tube of TBA solution (1 mL; 0.67% w/v). 

A solution with a pink color emerged after keeping the 

mixture for 10 minutes in boiling water. The mixture was 

left to cool down, and then, a spectrophotometer (UV-

1650 PC, Shimadzu, Japan) was used to read absorbance 

at 532 nm. In this study, serum MDA is presented as 

µmol/L, and tetraethoxypropane (TEP) is considered as 

the standard.  

 

HP assay 

A colorimetric assay was used to quantity the left lung 

total collagen content and HP content of the lungs.22,23 For 

this purpose, after homogenizing the minced lobes of the 

left lung in 6 M HCl and hydrolyzed at 130°C for five 

hours, NaOH was used to adjust pH to 6.5–7.0, and 

distilled water was used to adjust the sample volume to 30 

mL. After mixing chloramine T solution (1.0 ml; 0.05 

mol/L) with the sample solution (1.0 ml) and incubation 

for 20 minutes at room temperature, 1.0 ml of 20% 

dimethyl benzaldehyde solution was added and then 

incubated for 20 minutes at 60°C. Absorbance was 

measured at 550 nm. According to HP standards, the 

values were presented as mg HP per g wet lung weight. 

 

Histopathological examination 

After dissecting a section of the lung (5 µm) and its 

fixation in 10% phosphate-buffered formaldehyde, it was 

stained with hematoxylin and eosin (H&E staining). 

Connective tissues, recruitment of inflammatory cells, 

and collagen deposition were evaluated in the lungs. 

 

Statistical analysis 

Values are presented as mean±SD. For comparisons, one-

way ANOVA and Tukey’s test were applied in this study. 

The significance level was 0.05. 
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Results 

Lung index 

Body weight was calculated every week during the 

experiment. The lung index was measured after 

sacrificing the animals as the wet lung weight ratio to 

body weight (mg/g). The lung indices were 6.74±0.17 and 

7.44±0.25 m/g, respectively in the control and PQ groups. 

The Allo (100 and 200 mg/kg) and control groups showed 

no significant differences (Figure 2). 

 

 
Figure 2. Effects of Allo pretreatment at 50, 100, and 200 mg/kg 
on the lung index in a model of PQ-induced pulmonary fibrosis 
Values are presented as mean±SD (n= 6). 
*P<0.05 and #P<0.05, significant differences vs. the control and 
PQ groups, respectively. 

 

MDA levels 

The serum MDA content (lipid peroxidation index) 

increased in rats exposed to PQ in comparison with the 

controls (P<0.001). The serum MDA levels were 

1.24±0.15 and 2.78±0.31 µmol/lit in the control and PQ 

groups, respectively; Allo-pretreated rats showed a 

reduction in MDA level (Figure 3). 

 

 
Figure 3. Effects of Allo pretreatment at 50, 100, and 200 mg/kg 
on serum MDA content in PQ-induced pulmonary fibrosis  
Values are presented as mean±SD (n= 6).  
***P<0.001, significant difference vs. control group; #P<0.05 and 
##P<0.01, significant difference vs. PQ group. 

HP Content 

The lung HP content as an index of collagen accumulation 

was 1.69±0.26 and 5.79±0.53 mg/g tissue in the control 

and PQ groups, respectively (Figure 4). Treatment with 

Allo in doses 100 and 200 mg/kg significantly decreased 

lung HP in comparison with PQ group. 

 

 
Figure 4. Effects of Allo pretreatment (50, 100, and 200 mg/kg) 
on lung HP content in a PQ-induced pulmonary fibrosis model 
Data are presented as mean±SD (n= 6). 
***P<0.001, significant difference vs. control group; #P<0.05 and 
###P<0.001, significant difference vs. PQ group. 

 

Histological Changes 

According to the Photomicrographic analysis, grade 0 and 

grade 8 were more prominent in the control and PQ 

groups, respectively, based on the infiltration of 

fibroblasts, inflammatory cells, and extracellular matrix. 

The pretreated rats indicated grades 6-7 at 50 mg/kg, 

while grades 4-5 were more prevalent in the 

photomicrographs at 100 and 200 mg/kg (Figure 5). 

 

Discussion  

There are two phases in pulmonary toxicity with PQ. The 

first involves injury and destruction of alveolar epithelial 

cells, resulting in hemorrhage and edema, while the 

second one involves the infiltration of inflammatory cells 

into the alveolar space and septa, as well as alveolar cell 

differentiation into fibroblasts associated with collagen 

production.9,10,24,25 PQ can reach the lung through the 

circulation after ingestion, and accumulates in alveoli. 

This herbicide can produce a large amount of ROS 

through its interaction with lung and other organs. ROS 

can oxidize surrounding lipids and induce lipid 

peroxidation. Excessive ROS consumes reducing 

molecules such as glutathione, which can lead to more 

damage to the lungs and other organs. The amount of 

oxygen present in the alveoli can induce the production of 

PQ+ from PQ++ (PQ) by reductases (e.g. NADPH), and 

reduced form of PQ (PQ+) lead to the generation of 

superoxide anions (O2
●-). Superoxide anion may be 

finally transformed into hydrogen peroxide and hydroxyl 

radicals with other pulmonary reductases and ferrous ion 

(Fe2+).13,26-31
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Figure 5. These figures are representative of the role of Allo in lung damage induced by PQ. After collecting lung tissues 21 days after PQ 
administration, they were stained with H&E. The groups included: control, PQ, PQ pretreated with Allo 50 mg/kg (Allo 50+PQ), PQ pretreated 
with Allo 100 mg/kg (Allo 100+PQ), and PQ pretreated with Allo 200 mg/kg (Allo 200+PQ). Lung parenchyma is intact and preserved in the 
control group. Group PQ shows extensive interstitial infiltration and fibrosis. PQ-induced histological changes were markedly prevented in the 
Allo-pretreated groups at 100 and 200 mg/kg. 

 

 
Figure 6. Graphical abstract of the possible protective effects of allopurinol (Allo) against paraquat (PQ)-induced pulmonary fibrosis. 
SOD: Superoxide dismutase; ECM: Extracellular matrix; XO: Xanthine oxidase. 

 

These oxidative species can readily obtain hydrogen 

atoms from alveolar lipids so as to result in alveolar cell 

injury.27 It seems that XO increases superoxide anions 

production mediated by PQ.32 

PQ increased lung HP, serum MDA and lung index. These 

effects confirm that PQ induce oxidative stress by 

elevation in MDA levels, inflammation by infiltration of 

inflammatory cells in lung alveoli and fibrosis by 

elevation of tissue HP and presence of fibroblasts. 

Treatment with Allo, especially in receiving groups of 

100 and 200 mg/kg decreased HP, MDA and lung index. 

The fibroblast and inflammatory cell infiltration, as well 

as alveolar thickening as a result of PQ, could be 

prevented by Allo. Although XO inhibition is the most 

accepted mechanism of Allo activity, its antioxidative 

activity and potential as a free radical scavenger are also 

known. Allo prevents glutathione oxidation and lipid 

peroxidation, which is related to exhaustive physical 

exercise.16,33-38 It has been reported that XO inhibitors 

suppress oxidative stress and inflammation in liver 

damage induced by carbon tetrachloride and cirrhosis,39 

as well as doxorubicin-induced cardiotoxicity in rats.40 As 

shown in Figure 6, PQ induces oxidative stress and 

consequently oxidative damage which lead to pulmonary 

fibrosis. Allo prevents PQ fibrotic effects possibly 

through suppression of superoxide anion generation. 

 

Conclusion  

The present findings showed that PQ administration leads 

to lung fibrosis in rats by increasing oxidative stress. Allo 

prevents fibrosis dose-dependently through its antioxidant 

properties. 
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