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Introduction 

Multidrug resistance (MDR) hinders successful 

eradication of breast cancer, which is the most common 

cancer worldwide. In MDR, tumors resist against 

cytotoxic effects of different chemotherapy agents. 

Tumors are usually containing drug-resistant and drug-

sensitive cells. Following initial chemotherapy regimens, 

resistant cells may propagate and lead to regrowth of 

tumors which are resistant to further therapy. Resistant 

tumor cells frequently fight against cytotoxic agent 

through decrement of intracellular drug concentration and 

substitution of signal transduction involved in cell death 

and survival.1-2 Breast adenocarcinoma cell line MCF-7 

and its Adriamycin resistant subline MCF-7/ADR have 

shown resistance against TNF-α cytotoxic effect. It has 

also been reported that overexpression of manganese 

superoxide dismutase (MnSOD) attenuates cytotoxic 

effects of TNF-α in MCF-7 cells.3-4  

Reactive oxygen species (ROS) are mostly considered as 

harmful byproducts of cellular metabolism. However, 

accumulating evidence indicates that ROS are important 

and have essential role in cellular signaling. Free radical 

is a highly unstable and reactive atom, molecule or ion 

containing at least one unpaired electron in its outermost 

shell. ROS can be intricated in a cascade of pathologic 

events because they acquire electron from all nearby 

molecules and macromolecules.5-6 ROS can modify some 

specific cysteine residues in proteins involved in signal 

transduction and alter their activity in various conditions.7  

Intracellular ROS are mainly produced by mitochondria 

but it has been demonstrated that production of ROS can 

also be induced by cytokines and growth factors through 

activation of specialized NADPH-dependent plasma 

membrane oxidases. Some intracellular enzymes 

including cyclooxygenases, cytochrome P450 enzymes, 

xanthine oxidase and lipoxygenases can also generate 

ROS as part of their normal enzymatic function. On the 

other hand, there are antioxidant enzymes including 

superoxide dismutase (SOD), catalase and glutathione 

peroxidase, converting ROS to stable molecules.7 The 

level of antioxidant enzymes are influenced by level of 

ROS within the cells. Activity of transcription factors 

including Nrf2 and FoxO are dependent on the 

intracellular redox state and these transcription factors 

regulate the expression of antioxidant enzymes genes.8-9  

Tumor necrosis factor-α (TNF-α) is a key cytokine in 

immune system and is involved in pathological states 

relevant to acute and chronic inflammation, autoimmune 

disease and cancer-related inflammation. Binding of 

TNF-α to its receptor activates different downstream 
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mediators, which can affect redox state of cell.10 TNF-α 

demonstrates pleiotropic nature, it leads to inflammation 

and cell survival as well as apoptosis or necrosis on 

various cells and tissues.11-12 Different studies reported 

elevation of ROS level after TNF-α exposure, 

demonstrating role of ROS in TNF-α signaling.13-15 TNF-

α exposure induced ROS generation mainly in 

mitochondria while generation of ROS through NADPH 

oxidase was also reported.13-15 Transcription factor 

activation, cellular proliferation and cell death can be 

mediated by ROS following to TNF exposure.16-18 ROS 

mediate induction of sustaining JNK activation which is 

involved in the TNF-α toxicity.19-20 On the other hand, 

ROS has been reported to be able to activate or repress 

NF-κB signaling. Effect of ROS on NF-κB is controversy. 

Cell specific behaviors as well as different methodology 

might be responsible for many diverse results 

investigating ROS and NF-κB crosstalk. Moreover, 

expression of antioxidant enzymes including MnSOD, 

glutathione S-transferase, glutathione peroxidase-1 and 

catalase are regulated by NF-κB, which influences ROS 

level.17 Due to important role of ROS in TNF-α signaling 

in this investigation we examined role of ROS in response 

of MCF-7 and MCF-7/ADR cells to TNF-α. 

 

Materials and Methods 

Cell culture  

MCF-7 and MCF-7/ADR cells were cultured in the RPMI 

1640 supplemented with 10% fetal bovine serum 

(GIBCO, Grand Island, NY) and penicillin (100 

units/ml)/streptomycin (100 μg/ml) (GIBCO, Grand 

Island, NY, USA). Cells were incubated at 37˚C in the 

presence of 5% CO2. To maintain the MDR phenotype 

ADR (Sigma-Aldrich, Taufkirchen, Germany) (250 nM) 

was add to the culture media of MCF-7/ADR cells but 

eliminated one week before the experiments.  

 

Determination of intracellular ROS level   

The intracellular level of ROS was determined using 2',7'-

Dichlorofluorescein diacetate (DCFH-DA) (Sigma-

Aldrich, St. Louis, MO, USA). The cellular esterases 

hydrolyze the nonfluorescent ester DCFH-DA to 2’,7’-

dichloro fluorescein (DCFH) following to the penetration, 

then DCFH is oxidized to the highly fluorescent 

compound 2,7-dichlorofluorescein (DCF) by intracellular 

ROS. Cells were incubated in a media containing 50 μM 

DCFH-DA for 30 min in the dark at 37 °C following 

TNF-α (EMDMillipore, Billerica, MA, USA ) treatment 

for indicated times and concentrations. Fresh medium was 

used to wash stained cells and fluorescence was evaluated 

with a microplate spectrofluorometer (Synergy 4, BioTek, 

VT, USA) where the excitation and emission were 

adjusted to 485 and 530nm, respectively. The percentage 

of measurement in control wells was employed to report 

ROS generation. 

 

Cell viability assays 

Cells were seeded in a density of 6000 cell/well and 

incubated overnight. MCF-7 and MCF-7/ADR cells were 

treated with different concentrations of TNF-α alone or in 

combination with ROS-generating system (RGS). After 5, 

24 and 72 h cells were incubated with 0.5mg/ml 

dimethylthiazolyl-2,5-diphenyl tetrazolium bromide 

(MTT) for 3h, then 100 μL dimethyl sulfoxide was added 

to every well to dissolve Formosan crystals. Absorption 

at 570 nm of each well was determined using a microplate 

reader (Synergy 4, BioTek, VT, USA). Cell viability was 

calculated as a percentage of controls treated with vehicle.  

To investigate the role of ROS in TNF-α toxicity, RGS 

was employed along with TNF-α treatment. A 

composition of CuSO4 (1 μM), 1, 10-phenanthroline (1 

μM), and ascorbic acid (400 μM), H2O2 (20 μM) and 

paraquat (20 μM) (all from Sigma-Aldrich St. Louis, MO, 

USA) was utilized to generate ROS in the cells.21 The 

concentrations causing the cell survival rate of at least 

80% of untreated cultures after 72h were found using 

dose-response experiments.  

 

Analysis of antioxidant enzymes activity 

In addition to ROS production, intracellular redox 

homeostasis is also dependent on the activity of 

antioxidant enzymes. Therefore activity of enzymes 

including SOD, glutathione peroxidase (GP), glutathione 

reductase (GR) and catalase were analyzed using activity 

assay kites from Abcam (Abcam, Cambridge, MA, USA). 

The assays were done according to the manufacture's 

instruction. Briefly, treated cells were lysed using lysis 

buffers provided by the kites. All lysis buffers were 

supplemented by complete protease inhibitor cocktail 

(Roche, Welwyn, UK). Insoluble materials were 

sedimented using centrifugation in 14000×g at 4ºC for 15 

min. Afterward, a standard Bio-Rad Bradford protein 

assay with bovine albumin as standard (Bio-Rad, Hemel 

Hempstead, UK) was employed to determine protein 

concentrations. Ten μg of the total protein extract was 

subjected to enzyme activity assay. Absorbance values 

were measured using a microplate spectrofluorometer 

(Synergy 4, BioTek, VT, USA) and data reported as 

percentage of vehicle treated controls.  

 

Results 

Determination of intracellular ROS level   

Intercellular ROS level was evaluated by measuring the 

oxidation of nonfluorescent DCFH-DA to its highly 

fluorescent derivative DCF. MCF-7/ADR and MCF-7 

cells were exposed to TNF-α (1, 10, 25 and 50 ng/ml) for 

5, 24 and 72 h. Then DCF fluorescence was quantified 

and directly related to intracellular ROS level. As shown 

in Figure 1, TNF-α did not stimulate ROS generation in 

MCF-7 and MCF7/ADR cells. 

 

Cell viability assays 

Since MCF-7 and MCF-7/ADR resist against cytotoxic 

effects of TNF-α and ROS play important role in TNF-α 

induced cell death we hypothesized that resistance against 

TNF-α may be related to lack of ROS production after 

TNF-α exposure.3-4 
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Figure 1. Analyzing ROS accumulation after TNF-α treatment. A fluorescent plate reader was employed to measure the fluorescent intensity 
of DCF which is directly related to ROS level. MCF-7(A) and MCF-7/ADR (B) cells where treated with TNF-α at various concentrations for 5, 
24 and 72 h. Then ROS level was analyzed using DCFH-DA probe. tbHP was used as positive control. *Significantly different from control, P 
<0.05. 

 

 
Figure 2. Role of ROS accumulation in the TNF-α cytotoxicity. MCF-7 (A) and MCF-7/ADR (B) cells where treated with TNF-α and/or a 
standard ROS generating system. As demonstrated, ROS generating system (RGS) sensitized MCF-7 and MCF-7/ADR cells to the cytotoxic 
effects of TNF-α. *Significantly different from control, P<0.05. 

 

To examine the hypothesis TNF-α treatment was 

coincided with exposure to a standard ROS generating 

system. Accumulation of ROS following RGS treatment 

led to enhancement of cytotoxic effects of TNF-α in both 

MCF-7 and MCF-7/ADR cells (Figure 2). 

 

Analysis of antioxidant enzymes activity 

The balance between ROS generation and ROS 

detoxification is very important in the intracellular ROS 

accumulation therefore activity of ROS detoxifying 

enzymes including SOD, catalase, GR and GP were 

analyzed using commercial kits. Enzyme activity was 

analyzed based on manufacturer's instruction following 

exposure of both cell lines to 50 ng/ml TNF-α. All tested 

enzyme showed higher activity in MCF-7/ADR than 

MCF-7 cells (Figure 3) demonstrating better capacity of 

ROS detoxifying in MCF-7/ADR cells. TNF-α treatment 

enhanced activity of SOD and GP in both cell lines 

(P<0.05) (Figure 4) while catalase and GR activity were 

not demonstrated significant changes after TNF-α 

treatment (data not shown).  

 
Figure 3. Comparison of antioxidant enzymes activity between 
MCF-7 and MCF-7/ADR cells. Enzymes activities were analyzed 
using commercial kites in MCF-7 and MCF-7/ADR cells. Data 
represented as mean±SD of three independent experiments. 
*Significantly different from MCF-7 enzyme activity, P<0.05. 
 

Discussion 

TNF-α activates various downstream signaling mediators 

leading cells to survival or death.16 Despite their 

damaging effects, ROS also play important role in signal 

transduction.7 
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Figure 4. Analysis of GP and SOD activity. GP (A) and SOD (B) activity were assessed after TNF-α treatment in MCF-7 and MCF-7/ADR cell 
lines. As demonstrated, activity of GP and SOD were increased in MCF-7 and MCF-7/ADR cells after TNF-α treatment. Data represented as 
mean±SD of three independent experiments. *Significantly different from corresponding control, P<0.05. 

 

To study mechanisms of resistance of breast cancer cell 

lines MCF-7 and MCF-7/ADR to cytotoxic effects of 

TNF-α, this study was focused on the role of ROS. 

Although enhancement of intracellular ROS level 

following TNF-α treatment has been reported in various 

studies, TNF-α exposure did not induce ROS 

accumulation in MCF7 and MCF-7/ADR cells. Further 

investigations using ROS generating system 

demonstrated that MCF-7 and MCF-7/ADR cells 

resistance against TNF-α toxicity at least in part is 

mediated by lack of ROS accumulation. On the other 

hand, TNF-α exposure increased activity of antioxidant 

enzymes which can be one of the mechanisms involved in 

the lack of ROS accumulation. 

The cellular response (e.g., proliferation versus cell death) 

to TNF-α is determined by the balance between the cell 

death (apoptotic and non-apoptotic) and cell survivals 

signaling pathways.22 TNF-α exposure has led to ROS 

accumulation in various murine and human cell lines 

including cultured human umbilical vein endothelial cells 

and L929 murine cell line.13,23-24 Moreover, ROS 

accumulation and necrotic cell death was induced by 

TNF-α in RAW 264.7 monocytic and L929 fibroblasts 

cells.25 TNF-α-induction of ROS can be involved in cell 

death as well as cell survival signaling pathways. Most of 

the pro-survival effects of TNF-α are mediated by NF-κB 

activation and ROS have various inhibitory or stimulatory 

roles in NF-κB signaling.17 ROS are promoting TNF-α-

induced cell death by activation of pro-death proteins 

including JNK as well as inhibition of pro-survival 

pathways including NF-κB.26 Moreover, ROS represents 

direct anti-survival effects through oxidation of cellular 

macromoleculs and causes general damage and 

dysfunction.27 IKK and thioredoxin-1 which are involved 

in the activation of NF- κB and JNK, can be regulated by 

ROS through oxidation of their redox sensitive 

cysteines.28-29 Overall, moderate amounts of ROS usually 

induces cell proliferation while excessive rises of ROS 

triggers cell death.30 This preliminary experiment 

demonstrates resistance of MCF-7 and its drug resistant 

derivative MCF-7/ADR cells against TNF-α cytotoxicity 

is mediated by lack of ROS accumulation at least by part.  

Detoxifying of intercellular ROS to non-harmful products 

by antioxidant enzymes play role in the balance of 

intracellular redox homeostasis. Oxidized glutathione 

(GSSH) is converted to its reduced form (GSH) by GR. 

Organic hydroperoxides are detoxified by GP biological 

activity.  Highly reactive O2ˉ is converted to less toxic 

H2O2 by SOD activity and catalase reduces H2O2 to H2O. 

Transfection of MCF-7 cells with Mn-SOD expressing 

vector blocked cytotoxicity of TNF-α in human breast and 

cervical carcinoma cell lines31-32 and Mn-SOD expression 

and activity have been enhanced by TNF- α  treatment in 

various cell lines including endometrial stromal (ESC) 

and MCF-7.33-34 

 In this study, in consistent with other reports, TNF-α 

treatment enhanced SOD and GP activity in MCF-7 and 

MCF-7/ADR cells. Moreover, basal activity of all tested 

enzymes in MCF-7/ADR cells was higher than MCF-7 

cells. Expression of antioxidant enzymes including Mn-

SOD are regulated by NF-κB activation, which is also 

involved in TNF-α signaling as prosurvival factor. 

Therefore, NF-κB may also plays a role in the resistance 

of MCF-7 and MCF-7/ADR cells to TNF-α toxicity. 

Although DNA intercalating is the main mechanism of 

Adriamycin cytotoxicity but enhancement of ROS level 

following Adriamycin treatment have been reported in 

various studies and may involve in cytotoxic effects of 

Adriamycin.35-37 Accordingly, improved capacity of ROS 

detoxifying in MCF-7/ADR cells can be one of the 

Adriamycin resistance mechanisms in this cell line.  More 

studies on finding mechanisms underlying enhanced 

activity of antioxidant enzymes in MCF-7/ADR cells may 

help in clarifying molecular events causing MDR.  

 

Conclusion 

Overall, our data demonstrate that lack of ROS 

accumulation is involved in MCF-7 and MCF-7/ADR 

resistance against TNF-α cytotoxicity at least by part. 

Moreover, enhancement of antioxidant enzymes activity 

following to TNF-α exposure may be involved in this 

resistance. More investigation on TNF-α signaling 

mediators including NF-κB, JNK and Akt may help 

http://en.wikipedia.org/wiki/Lipid
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clarifying the mechanisms contributing to MDR as well 

as development of new therapeutic strategies against it.   
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