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Introduction 

It is well-known that the solubility data play an important 

role in optimizing the crystallization procedure and 

improving the purity and yield of drugs manufacturing. 

Therefore, it is necessary to know the solubility of drugs 

in different solvents at various temperatures. On the other 

hand, the low solubility of drugs in water is one of the 

main challenges in pharmaceutical fields. 

  

 
Figure 1. Chemical structure of naproxen. 
 

Naproxen or (+)-6-methoxy-α-methyl-2-naphthaleneace-

tic acid (NAP, Figure 1) is a nonsteroidal anti-inflamma-

tory drug (NSAID) that relieves pain, fever, swelling, and 

stiffness but it is slightly soluble in water (15.9 mg.L-1),1 

and poor aqueous solubility of a drug is the factor that 

limits its development into desired formulation.2 In this 

respect, the low solubility of NAP should be increased for 

the widespread uses and production process of liquid 

pharmaceutical dosage forms (LPDF).3,4 The most 

effective and inexpensive method for increasing the 

solubility is co-solvency method. Conventionally, organic 

solvents5-8 and ionic liquids (ILs)9-11 have been used as co-

solvents to improve the low solubility of drugs. However, 

these types of solvents are highly flammable, expensive 

and toxic for human health.12,13 Therefore, it is necessary 

to develop new solvents with lower costs and toxicity and 

wider availability. Newly, to overcome the limitations of 

organic solvents and ILs, deep eutectic solvents (DESs) 

have been introduced and some of them are used to 

increase solubility and bioavailability of poorly soluble 

drugs.14,15 These novel solvents can be prepared using 

biodegradable, non-toxic and natural materials.16 They 

are liquid at room temperature and are considered safer 

and more environmentally benign and are made of cheap 

compounds such as a quaternary ammonium salt as 

hydrogen bond acceptor (HBA) (e.g. choline chloride 

(ChCl)) and a hydrogen bond donor (HBD) (e.g. urea or a 

carboxylic acid) at their eutectic composition with 

melting point much lower than that of the individual 

components.14 DESs properties could be tuned by altering 

the HBA/HBD weight ratio. 

In continuation of our systematic investigation of drug 

solubility in DESs systems,17-19 the solubility of NAP was 

measured in the aqueous DESs solutions (ChCl/glycerol 

(G) and ChCl/ oxalic acid (OA) and the activity 
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coefficient models such as Wilson,20 e-NRTL,21,22 and 

UNIQUAC23 have been used to correlate the aqueous 

solubility data, at various experimental temperatures. In 

addition, to describe the thermodynamic behavior of NAP 

in the aqueous DES solutions, the van’t Hoff and Gibbs 

equations were used to calculate some thermodynamic 

functions such as, Gibbs energy, enthalpy, and entropy of 

dissolution at T = (298.15 K to 313.15) K.24-26 

 

Materials and methods  

Chemical 

Naproxen was procured from Zahravi pharmaceuti-

cal company (Tabriz, Iran), choline chloride, oxalic acid 

and glycerol extra pure and absolute ethanol were 

purchased from Merck (Germany). All materials were 

used as received without other purification. The complete 

description of the materials has been reported in Table 1. 

 

DES preparation 

Two DESs were synthesized in this work. Firstly, choline 

chloride (ChCl) was selected as hydrogen bonding 

acceptor (HBA), which was mixed with glycerol and 

oxalic acid with a mole ratio of 1:2 and 1:1respectively.27 

Briefly, the corresponding mixtures were stirred and 

heated at 353.15 K for 1 h until homogeneous and 

transparent liquid was obtained. Some of the 

thermophysical properties of these solvents measured in 

this study and reported by others researchers are 

summarized in Table 2. 

 

Solubility measurement 

There are different methods of testing and measuring the 

solubility reported in the literature.28 In this work, the 

shake flask method has been used for the solubility 

measurement. Firstly, excess amounts of NAP were added 

to sealed vials containing appropriate amount of solvent 

mixtures (DES + water) using an analytical balance with 

precision 1 × 10−4 g (AW 220, GR220, Shimadzu, Japan). 

Then the vials with the mixture (solid + liquid) and a 

magnet were stirred in a system with thermostat (ED, 

Julabo Co., Germany T = ±0.1 K). Then the vials were 

placed in water bath thermostat that was equipped with a 

temperature-controlling system for 3 days to reach 

equilibrium. When a saturated solution was attained, the 

solid phase was removed by centrifugation (D-7200 

Tuttlingen, Hettich Co., U.S.A.) followed by filtration 

(Durapore® membrane filters, type HV, 0.45 µm, 

Millipore, MA). The clear solutions were diluted with 

(ethanol + water) and assayed by a double beam 

spectrophotometer (T80 UV-vis spectrometer PG 

instruments, U.K.) at 262 nm (Figure 3). The 

concentrations of the diluted solutions were determined 

using the calibration curve. Each experimental data point 

represented the average of at least three repetitive 

experiments. Also, we recorded the UV-vis spectra 

(Figure 2) of DESs and NAP in the aqueous DESs 

solutions which show no interference between them. 

The aqueous solubility of NAP in term of drug mole 

fraction, , in {NAP (1) + water (2) + DESs (3)}system 

was obtained by flowing formula:29 

 

𝑥1 =

𝑤1
𝑀1

𝑤1
𝑀1

+
𝑤2
𝑀2

+
𝑤3
𝑀3

                                               Eq. (1)  

 

where Mi and wi are the molar mass and mass fractions of 

i component in the saturated solution, respectively. 

 

Table 1. Descriptions of the used materials. 

Chemical name Provenance CAS No. Mass fraction (purity) Structure 

Naproxen 
Zahravi Pharmaceutical 

company  
26159-31-9 >0.98 

 

Choline Chloride Merck 67-48-1 >0.99 

 

Oxalic acid Merck 144-62-7 >0.99 

 

Glycerol Merck 56-81-5 >0.99 

 

 
 

Table 2. Common properties of  DESs used in the article at 298.15 K. 

DES Salt – HBD Melting 
Point (K) / (kg∙m-3) 

u(m∙s-1) nD
 Water 

content  
(wt %)  (molar ratio)  Exp Lit  Exp Lit 

ChCl/OA 1:1 307.1515 1.210926 1.2200 27 1925.00 1.4809 1.4868 31 0.26 
ChCl/G 1:2 233.1530 1.176963 1.1800 15 2012.59 1.4865 1.4867 32 0.33 

1x

d310
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Figure 2. UV–Vis absorption spectra of a) studied DESs in water b) naproxen in aqueous DES solutions. 
 

Modeling  

One of the most important issue in the pharmaceutical 

science is knowledge of the drugs solubility, because it 

allows scientists and engineers to select appropriate 

solvents for drug manufacturing processes. In this regard, 

through a solid-liquid equilibrium (SLE) framework, the 

following equation is obtained:22 

  

−𝑙𝑛𝑥1 =
∆𝑓𝑢𝑠𝐻

𝑅
(
1

𝑇
−

1

𝑇𝑓𝑢𝑠
) + 𝑙𝑛𝛾1                       Eq. (2) 

where , , ,  and  refer to: melting 

temperature for the pure NAP, enthalpy of fusion for the 

pure NAP, (solid + liquid) equilibrium temperature, 

equilibrium mole fraction, and the activity coefficient of 

the NAP in the saturated solution, respectively. The 

enthalpy of melting is considered to be temperature 

independent. To correlate the solubility data of the present 

drug in the aqueous DES solutions, experimental activity 

coefficients were obtained through Eq. (2) for the 

solutions.  

 

The Pitzer–Debye–Hückel (PDH) equation 

The PDH equation for excess Gibbs energy, Gex*LR, can be 

written as:33 

𝐺𝑒𝑥∗,𝑃𝐷𝐻

𝑅𝑇
= −∑ 𝑥𝑗(

1000

𝑀𝑠
)1/2

4𝐴𝜑𝐼𝑥

𝜌
ln⁡(1 + 𝜌𝐼𝑥

0.5)𝑗   

         Eq. (3)  

where MS and ρ are the molar mass of the solvent and the 

closest distance parameter, respectively. Ix is the ionic 

strength in mole fraction scale ( ) and Aφ 

denotes the Debye–Hückel constant for the osmotic 

coefficient and is expressed by: 

 

𝐴𝜑 =
1

3
(
2𝜋𝑁𝐴

𝑉𝑠
)1/2(

𝑒2

4𝜋𝜀𝐷𝑠𝑘𝑇
)3/2                          Eq. (4) 

where NA, k, ε, e, VS and DS are Avogadro’s number, 

Boltzmann constant, permittivity of  vacuum, electronic 

charge, molar volume and dielectric constant of pure 

solvent, respectively. The parameter ρ in Eq. (3) is related 

to the hard-core collision diameter, or distance of closest 

approach of ions in solution. The value of ρ = 14.9 has 

been regularly used for aqueous electrolyte solutions.34 

 

Electrolyte-NRTL model 

One of the most commonly used activity coefficient based 

thermodynamic model for industrial systems is the 

electrolyte-NRTL model (e-NRTL) by Chen (1982) 35 and 

Chen and Evans (1986).36 For each species, the activity 

coefficient is the sum of the Pitzer–Debye–Hückel 

contribution and the NRTL contribution.35 

 

ln(𝛾𝑖
∗) = ln(𝛾𝑖

∗𝑃𝐷𝐻) + ln⁡(𝛾𝑖
∗𝑁𝑅𝑇𝐿)                    Eq. (5) 

 

fusT Hfus T 1x 1

 2

2

1
iix ZxI
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ln 𝛾𝐼
𝑁𝑅𝑇𝐿 = ∑ 𝑟𝑖,𝐼 [

∑ 𝑋𝑗𝐺𝑗𝑖𝜏𝑗𝑖𝑗

∑ 𝑋𝑘𝐺𝑘𝑖𝑘
+

∑
∑ 𝑋𝑗𝐺𝑖𝑗𝑗

∑ 𝑋𝑘𝐺𝑘𝑗𝑘
(𝜏𝑖𝑗 −

∑ 𝑋𝑘𝐺𝑘𝑗𝜏𝑘𝑗𝑘

∑ 𝑋𝑘𝐺𝑘𝑗𝑘
)𝑗

]𝑖   

                                                                                Eq. (6) 

with interaction parameters as .  

Wilson model 

Wilson (1964) presented the following expression for the 

component i activity coefficients:20 

ln𝛾𝑖 = 1 − ln [∑𝑥𝑗𝛬𝑖𝑗

𝑛

𝑗=1

] −∑[
𝑥𝑘𝛬𝑘𝑖

∑ 𝑥𝑗𝛬𝑘𝑗
𝑛
𝑗=1

]

𝑛

𝑘=1

 

             Eq. (7) 

 

where is the binary interaction parameter which are 

related to the pure-component molar volumes, ,  and to 

characteristic energy, , differences by: 

𝛬𝑖𝑗 =
𝜐𝑗

𝜐𝑖
𝑒𝑥𝑝 (−

𝜆𝑖𝑗−𝜆𝑖𝑖

𝑅𝑇
)                                      Eq. (8) 

 

UNIQUAC model  

The Universal Quasi-Chemical theory, from which the 

UNIQUAC model is derived, can be expressed in terms 

of the activity coefficients as. The UNIQUAC equation23 

contains adjustable interaction parameters and is written 

as: 

ln(𝛾𝑖) = ln(𝛾𝑖
𝐶) + ln⁡(𝛾𝑖

𝑅)                                  Eq. (9) 

 

 

ln(𝛾𝑖
𝐶) = ln (

Φ𝑖

𝑥𝑖
) +

𝑧

2
𝑞𝑖 ln (

𝜃𝑖

Φ𝑖
) + 𝑙𝑖 −

Φ𝑖

𝑥𝑖
∑ 𝑥𝑗𝑙𝑗
𝑚
𝑗=1   

                                                                              Eq. (10) 

 

  𝑙𝑖 =
𝑧

2
(𝑟𝑖 − 𝑞𝑖) − (𝑟𝑖 − 1)                                Eq. (11) 

 

ln(𝛾𝑖
𝐶𝑅) = −𝑞𝑖 (1 + ln(∑ 𝜃𝑖𝜏𝑗𝑖

𝑚
𝑗=1 ) −

∑
𝜃𝑖𝜏𝑗𝑖

∑ 𝜃𝑘𝜏𝑘𝑖
𝑚
𝑘=1

𝑚
𝑗=1 )⁡⁡⁡                                            Eq. (12) 

 

𝜃𝑖 =
𝑞𝑖𝑥𝑖

∑ 𝑞𝑗𝑥𝑗
𝑚
𝑗=1

,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡Φ𝑖 =
𝑟𝑖𝑥𝑖

∑ 𝑟𝑗𝑥𝑗
𝑚
𝑗=1

 Eq. (13) 

The variables , , and  are the volume fraction, 

area fraction, and interaction parameter between molecule 

i and j, respectively. The coordination number, z, the 

number of molecules surrounding the central molecule, is 

set to 10. Parameters r and q are pure component 

molecular-structure constants depending on molecular 

size and external surface areas. The r and q are the model 

parameters that their values for used materials have been 

listed in Table 3. The adjustable interaction parameter 

which is related to an energy parameter characteristic of 

the i–j interaction, , for this model is: 

ln⁡(𝜏𝑖𝑗) = (−
Δ𝑢𝑖𝑗

𝑅𝑇
)                                         Eq. (14) 

The interaction parameters of the Wilson, e-NRTL and 

UNIQUAC models were determined by minimizing the 

objective function Eq. (14). 

 

⁡𝑂𝐹 = ∑ (𝑙𝑛𝛾𝑖
𝑒𝑥𝑝 − 𝑙𝑛𝛾𝑖

𝑐𝑎𝑙)2𝑛
𝑗=1                   Eq. (15) 

where n is the experimental points, also and 

 are representing the experimental and calculated 

activity coefficients.  

The difference between the experimental and the 

calculated solubility’s results is defined by average 

relative deviation percent (ARD%) and it is calculated for 

all activity coefficient models using the following 

equation: 

 %𝐴𝑅𝐷 = 100(
∑

|𝑥
𝑖
𝑒𝑥𝑝

−𝑥𝑖
𝑐𝑎𝑙|

|𝑥
𝑖
𝑒𝑥𝑝

|

𝑁
𝑖=1

𝑁
)                          Eq. (16) 

where ,  and  are experimental and 

calculated solubility and number of experimental points, 

respectively. 

 
Table 3. UNIQUAC r and q parameters for the used components. 

component r q 

Water37 0.9200 1.4000 
NAP 8.4429 6.2680 
ChCl 5.6006 5.0560 
OA 2.6026 2.4480 
G 3.8399 3.6800 

 

Thermodynamic properties of dissolution 

Thermodynamic properties of solute dissolved in solvent 

mixtures can present important information.38 In this 

study, the thermodynamic functions in the process of 

NAP dissolution are calculated based on the solubility of 

NAP in water and aqueous DES solutions as a function 

of temperature. The standard molar enthalpy of 

dissolution, , is calculated from van’t Hoff 

equation and defined as:39-41 

 Δ𝐻𝑠𝑜𝑙
𝜊 = −𝑅(

∂ln𝑥1

𝜕(1 𝑇⁄ )
)𝑃                                      Eq. (17) 

where  is the mole fraction of NAP solubility, R 

represents the universal gas constant (8.314         J∙K-1∙mol-

1) and T is the absolute temperature. The standard molar 

enthalpy change of solution,  , is generally 

obtained from the slope of the solubility curve in a so-

called van’t Hoff plot  where lnx1 is plotted against T -1. 

Over a limited temperature interval, the heat capacity 

change of a solution may be assumed to be constant, 

hence the derived values of  will also be valid 

for the mean temperature, = 305.41 K and 

Eq. (16) can also be written as:41 

ji ii
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g g
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Δ𝐻𝑠𝑜𝑙
𝜊 = −𝑅(

∂ln𝑥1

𝜕(1 𝑇⁄ −1 𝑇𝑚⁄ )
)𝑃                                Eq. (18) 

The standard molar Gibbs energy of the dissolution 

process,   can be calculated according to:42 

Δ𝐺𝑠𝑜𝑙
𝜊 = −𝑅𝑇𝑚 × 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡                            Eq. (19) 

 

where the intercept used is that obtained in plots of lnx1 

versus (1/T - 1/Tm). The 

standard molar entropy of dissolution is also obtained 

from the following equation:38 

Δ𝑆𝑠𝑜𝑙
𝜊 =

Δ𝐻𝑠𝑜𝑙
𝜊 −Δ𝐺𝑠𝑜𝑙

𝜊

𝑇𝑚
                                             Eq. (20) 

The  and  identify as the comparison of the 

relative contributions to the standard molar Gibbs energy 

by enthalpy and entropy in the dissolution process, 

respectively are expressed as follows:43 

%𝜉𝐻 =
|Δ𝐻𝑠𝑜𝑙

𝜊 |

|Δ𝐻𝑠𝑜𝑙
𝜊 |+|𝑇Δ𝑆𝑠𝑜𝑙

𝜊 |
× 100                            Eq. (21) 

 

%𝜉𝑇𝑆 =
|𝑇Δ𝑆𝑠𝑜𝑙

𝜊 |

|Δ𝐻𝑠𝑜𝑙
𝜊 |+|𝑇Δ𝑆𝑠𝑜𝑙

𝜊 |
× 100                      Eq. (22) 

 

Results and Discussion 

Solubility results 

The experimental NAP solubility data in mixed solvents 

(DES + water) with different DESs weight fractions at 

various temperatures (298.15 to 313.15 K) are listed in 

Table 4. The relationship between solubility of NAP, , 

versus absolute temperature in the aqueous DES solutions 

with different weight fractions of DESs has been revealed 

in Figure 3. It can be seen from this figure, the solubility 

of the drug was increased in the aqueous DES solutions at 

higher concentration of DES and temperatures. The 

comparison of experimental mole fraction solubility in 

this study and those values in the literature in systems 

containing ethanol + water and poly ethylene glycol 200 

(PEG 200) + water are summarized in Table 5. The results 

in this table indicate that the mole fraction solubility of 

NAP in ethanol + water mixture at each temperature and 

the same co-solvent weight fraction (w3= 0.9)44 is slightly 

higher than its value compared to ChCl/OA. The 

solubility values of NAP in aqueous PEG 200 solutions 

however are higher than our obtained values and w3= 

0.9.45 But the advantage of using DESs is that they are 

more sustainable and environmentally friendly solvents 

for pharmaceutical industry. 

 

 
Figure 3. The relationship between the solubility of NAP, mole 
fraction x1, versus mass fraction of DES, wDES, in aqueous 
ChCl/OA solutions at various temperatures.

 

Table 4. The experimental (  )a and calculated ( ) solubility of NAP in the aqueous DES solutions at different temperatures (T)b and 

weight fractions of DES (w3 )
c from e-NRTL, Wilson and UNIQUAC models. 

T / K  e-NRTL model  Wilson model  UNIQUAC model 

    
 

 
 

 

 
  NAP + water + ChCl/ OA    

w3=0.0000        
298.15 0.510 0.510 -0.09 0.510 0.01 0.505 0.96 
303.15 0.596 0.594 0.18 0.595 0.02 0.600 -0.76 
308.15 0.656 0.657 -0.18 0.656 -0.04 0.655 0.11 
313.15 0.772 0.768 0.48 0.770 0.25 0.772 -0.05 

       
w3=0.2000        

298.15 16.9 16.9 0.28 17.1 -0.75 16.9 0.28 
303.15 19.1 19.1 0.13 19.1 0.13 19.1 0.18 
308.15 26.4 26.2 0.70 26.2 0.64 25.6 3.08 
313.15 37.3 36.4 2.55 36.9 1.16 36.9 0.98 

        
w3=0.4000        

298.15 25.9 25.8 0.41 26.1 -0.44 25.5 1.68 
303.15 40.5 38.9 4.00 40.3 0.55 40.8 -0.62 
308.15 58.2 26.0 7.87 28.3 -0.03 31.1 -9.97 
313.15 83.8 82.8 1.19 83.8 0.02 84.5 -0.85 

        
 


solG

H TS

1x

exp

1x calx1

exp
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Table 4. Continued 
w3=0.6000        

298.15 44.5 44.3 0.47 45.1 -1.49 45.0 -1.18 
303.15 86.3 89.9 -4.26 86.3 -0.01 86.2 0.05 
308.15 95.5 101.6 -6.35 96.7 -1.23 86.1 9.87 
313.15 183 189 -3.48 187 -2.17 180 1.61 

      
w3=0.8000        

298.15 170 168 1.13 171 -0.60 167 1.83 
303.15 454 416 8.39 453 0.08 448 1.18 
308.15 696 618 11.25 690 0.86 705 -1.29 
313.15 1006 776 22.84 1004 0.17 999 0.68 

       
w3=0.9000        

298.15 740 724 2.08 739 0.02 741 -0.18 
303.15 937 951 -1.53 937 0.03 947 -1.03 
308.15 1122 1110 1.06 1124 -0.18 1148 -2.32 
313.15 1337 1558 -16.52 1332 0.34 1340 -0.25 

       NAP + water + ChCl / G 
  

w3=0.0000      
298.15 0.510 0.509 0.16 0.511 -0.14 0.510 0.01 
303.15 0.596 0.593 0.37 0.596 -0.15 0.592 0.51 
308.15 0.656 0.650 0.94 0.656 -0.02 0.643 2.03 
313.15 0.772 0.771 0.13 0.772 -0.06 0.781 -1.16 

       
w3=0.2000        

298.15 3.48 3.50 -0.69 3.48 -0.17 3.58 -2.99 
303.15 3.85 3.83 0.55 3.84 0.25 3.91 -1.65 
308.15 4.17 4.44 -6.39 4.18 -0.05 4.35 -4.33 
313.15 4.57 4.85 -6.06 4.50 1.57 4.56 0.21 

       
w3=0.4000        

298.15 4.68 4.56 2.54 4.61 1.53 4.39 6.21 
303.15 5.12 5.10 0.35 5.04 1.47 4.87 4.80 
308.15 7.42 6.25 15.83 7.36 0.79 6.47 12.77 
313.15 9.38 7.64 18.50 9.35 0.31 9.57 -2.03 

       
w3=0.6000        

298.15 5.60 5.74 -2.42 5.51 1.68 5.99 -7.07 
303.15 6.44 6.34 1.62 6.35 1.42 6.75 -4.75 
308.15 7.72 8.99 -16.56 7.73 -0.15 8.74 -13.31 
313.15 12.2 14.4 -17.60 12.5 -1.86 12.3 -0.82 

        
w3=0.8000        

298.15 30.2 29.4 2.52 29.9 0.83 29.1 3.54 
303.15 46.2 48.5 -4.95 46.2 0.01 44.9 3.00 
308.15 49.8 48.6 2.22 50.4 -1.41 46.0 7.51 
313.15 50.6 49.1 8.98 52.5 -3.58 49.6 1.98 

        
w3=0.9000        

298.15 210 209 0.75 211 -0.37 212 -1.02 
303.15 238 228 4.23 238 0.09 241 -1.11 
308.15 297 281 5.38 295 0.68 305 -2.60 
313.15 333 330 0.61 315 5.47 336 -0.76 

a Standard uncertainty u(x1
exp) = 0.5%, b Standard uncertainty u(T) = 0.01 K.c Standard uncertainty u(w3) = 0.0002. 

 
Table 5. Comparison of NAP Solubility (model fraction) in this study and literature. 

NAP mole fraction solubility 

Experimental data in this study Literature44,45 

w3= 0.9 T=298.15 
ChCl/OA + water 7.40× 10-3 Ethanol + water 1.10 × 10-2 
ChCl/G + water 2.10× 10-3 PEG 200 + water 1.23 × 10-2 

w3= 0.9, T=303.15 
ChCl/OA + water 9.37× 10-3 Ethanol + water 1.36× 10-2  

ChCl/G + water 2.38× 10-3 PEG 200 + water 1.79 × 10-2 

w3= 0.9, T=308.15 
ChCl/OA + water 11.22× 10-3 Ethanol + water 1.70× 10-2 
ChCl/G + water 2.97× 10-3 PEG 200 + water 2.45 × 10-2   

w3= 0.9, T= 313.15 
ChCl/OA + water 13.37× 10-3 Ethanol + water 1.99 × 10-2 
ChCl/G + water 3.33× 10-3 PEG 200 + water 3.22 × 10-2 
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Modeling results 
In the next step, the solubility data of NAP in the aqueous 

solutions were correlated with the activity coefficient 

models including Wilson, e-NRTL and UNIQUAC 

models. The modeling results are summarized in Table 4. 

The corresponding parameters for used models are given 

in Table 6 and the calculated ARD% values are given in 

Table 7 for used models in this work. Thus, the 

proficiency of these models in correlation of the 

experimental solubility data can be ordered as Wilson> 

UNIQUAC > e-NRTL for systems. 

 

Table 6. The parameters of 1) e-NRTL 2) Wilson 3) UNIQUAC activity coefficient models for the NAP in the different solvents at various 
temperatures. 

1) T / K 
10-4 
∆gwd

b 
10-5  
∆gdw 

∆gGd
 b 

10-4  
∆gdG 

10-4 
∆gcaw 

10-4  
∆gwca 

10-4 
∆gcad 

10-4  
∆gdca 

10-4 
∆gGca 

∆gcaG ∆gGw ∆gwG 

NAP + water + ChCl  / G 

298.15 2.069 -14.677 3.353 1.85 -4.525 5.346 2.792 339.069 1.368 0.124 0.247 0.565 
303.15 4.065 -9.309 -8.395 1.861 -4.279 2.642 -214.07 -123.566 -2.445 0.124 0.247 0.565 
308.15 2.18 1.802 2.122 2.042 -6.763 7.067 -1.078 2.162 2.177 0.124 0.247 0.565 
313.15 3.175 -6.007 1.025 1.304 -1.269 2.83 4.146 -1.833 2.091 0.124 0.247 0.565 

NAP + water + ChCl  / OA 

298.15 1.653 7.71 4.9796 2.026 -3.949 4.921 -2.744 -1.112 3.367 0.124 0.247 0.565 
303.15 2.116 2.718 -1.795 1.284 -1.285 4.957 -5.762 -1.862 -4.924 0.124 0.247 0.565 
308.15 3.002 -5.408 -1.479 1.288 5.291 1.023 -1.646 3.233 2.112 0.124 0.247 0.565 
313.15 2.223 2.718 -5.551 1.32 -1.285 -7.212 -5.551 -1.237 -1.311 0.124 0.247 0.565 

             

2) T / K 106 Λwd Λdw 103 ΛGd ΛdG 103Λcaw Λwca 103 Λcad Λdca 103ΛGca 105ΛcaG ΛGw ΛwG 

NAP + water  + ChCl / G 

298.15 8.019 3.515 -0.013 4.165 0.026 0.288 0.154 4.794 0.015 -2.017 0.038 -0.029 
303.15 8.139 3.355 -0.013 4.205 0.026 0.244 0.153 4.754 0.015 -1.746 0.038 -0.028 
308.15 6.187 3.256 -3.271 0.321 6.708 0.157 0.056 0.413 3.757 -2.554 0.001 -0.015 
313.15 1.925 3.216 0.01 0.711 -0.019 -0.984 0.127 0.279 0.186 1.147 -0.028 -0.274 

NAP + water  + ChCl / OA 

298.15 3.332 2.695 -0.015 8.584 0.017 1.096 0.272 6.634 0.015 -2.042 0.036 -0.031 
303.15 1.152 3.22 -0.016 4.958 0.017 0.401 0.149 4.487 0.015 -1.92 0.038 -0.03 
308.15 7.008 3.225 -0.016 1.876 0.016 0.2 0.12 1.448 0.015 -1.704 0.04 -0.029 
313.15 1.057 3.228 0.017 1.019 -0.016 0.051 0.078 0.536 0.08 1.562 -0.03 -0.245 

             

3) T / K 
10-4 
∆uwd

b 
10-3  
∆udw 

10-4 ∆uGd
 

b 
10-3  
∆udG 

∆ucaw ∆uwca 
10-3 
∆ucad 

∆udca ∆uEGca 
10-3 
∆ucaG 

10-3 
∆uGw 

∆uwG 

NAP + water + ChCl / G 

298.15 1.433 -4.501 1.562 -4.768 -6.056 181.285 5.616 -38.767 36.97 0.005 -3.148 161.215 
303.15 0.889 -3.427 -0.006 -1.269 -1381 3875.01 10.01 -42.521 58.201 -0.241 -3.495 -3.007 
308.15 1.455 -4.596 1.567 -4.906 -6.056 164.827 5.879 -38.575 36.94 4.635 -3.065 159.006 
313.15 1.621 -4.89 1.665 -5.187 -6.058 1.74 7.761 -38.413 35.832 4.544 -3.63 206.581 

NAP + water + ChCl / OA 

298.15 1.326 -4.322 1.131 -3.905 -6.057 336.288 1.069 -38.484 36.423 -2.741 -6.027 175.932 
303.15 1.44 -4.545 1.509 -6.292 -6.057 420.46 2.075 -38.059 35.67 -6.409 -7.152 190.121 
308.15 1.477 -4.633 1.616 -6.687 -6.057 434.649 2.153 -26.827 23.122 -6.91 -7.516 329.091 
313.15 1.402 -4.54 1.333 -6.163 -6.057 421.441 1.314 -38.332 36.137 -6.562 -7.337 181.278 

d=drug, w=water, G= glycerol or oxalic acid, Ca=cation or anion. 
 

Table 7. The calculated average relative deviation percent (ARD%) for the solubility of the NAP in the aqueous DES solutions at several 
temperatures from different models. 

 ARD% 

T / K e-NRTL Wilson UNIQUAC 

NAP + water + ChCl / OA  

298.15 0.74 0.55 1.02 

303.15 3.08 0.14 0.63 

308.15 4.56 0.50 4.44 

313.15 7.84 0.68 0.74 

Average 4.05 0.47 1.71 

NAP + water + ChCl / G 

298.15 1.51 0.78 3.47 

303.15 2.01 0.56 2.64 

308.15 7.88 0.51 7.09 

313.15 8.71 2.14 3.57 

Average 5.03 0.99 4.19 
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Table 8. Thermodynamic functions for dissolution process at different weight fractions of DES (w3) at mean temperature 

w3 / kJ∙mol-1 / kJ∙mol-1 / kJ∙mol-1   

NAP + water + ChCl / OA  
0.0000 20.79  -9.65  30.44   68.30 31.70 
0.0200 21.00  -4.63  25.63 81.95 18.05 
0.0500 39.95  15.15 24.81  72.51 27.49 
0.0700 52.95  28.76 24.19  64.80 35.20 
0.1000 51.40  28.03 23.37 64.71 35.29 
0.1500 39.13  16.79 22.34  69.98 30.02 
0.2000 41.67  20.48 21.20  67.05 32.95 
0.4000 51.72  32.14 19.58  61.67 38.33 
0.6000 45.42  27.13 18.29  62.61 37.39 
0.8000 72.46  58.72 13.74  55.24 44.76 
0.9000 33.56  22.25 11.31  60.14 39.86 

 NAP + water + ChCl / G 
  

0.0000 20.79 -9.65 30.44 68.30 31.70 
0.0200 48.05 20.13 27.92 70.47 29.53 
0.0500 34.50 7.06 27.43 83.01 48.44 
0.0700 27.14 0.04 27.10 99.86 0.14 
0.1000 22.05 -4.62 26.67 82.68 17.32 
0.1500 10.84 -15.05 25.89 41.88 58.12 
0.2000 14.05 -11.67 25.73 54.62 45.38 
0.4000 38.05 13.51 24.53 73.79 26.21 
0.6000 39.01 14.93 24.08 72.33 27.67 
0.8000 25.48 5.80 19.67 81.45 18.55 
0.9000 24.89 9.82 15.07 71.70 28.30 

 

Thermodynamic properties of dissolution results 

The results of , , and are collected 

in Table 8. The standard molar Gibbs energy and enthalpy 

of dissolution are positive in the systems indicate that the 

process of NAP dissolution in the studied DES solutions 

is always endothermic. The values decrease with 

increasing the weight fraction of DES, which show that 

the solubility of NAP in these types of the solvents 

increases with the decrease of the values.  

On the other hand,  is positive in most studied 

systems. The calculated and values are given in 

Table 8. From this table it follows that the main 

contribution to standard molar Gibbs energy of 

dissolution process of NAP is the enthalpy (greater than 

54% in all cases) 

 

Conclusion 

The aqueous solubility of naproxen in the presence of 

some deep eutectic solvents (ChCl/oxalic acid and 

ChCl/glycerol), as co-solvents was determined 

experimentally within the temperatures ranging from 

298.15 to 313.15 K. The naproxen solubility mole fraction 

in the studied solvents was increased with increasing deep 

eutectic solvents concentration and temperature. The 

solubility data was correlated with some activity 

coefficient models and their performance was Wilson > 

UNIQUAC > e-NRTL. Also, dissolution thermodynamic 

functions were calculated for these systems and the 

positive  and  indicate that the dissolution 

process of naproxen to be endothermic and 

nonspontaneous which this trend decreases with addition 

of DES in aqueous media. Also, the main contribution to 

standard molar Gibbs energy in dissolution process of 

naproxen in the aqueous DES solutions is enthalpic. 
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