Dicaffeoylquinic Acids from the Aerial Parts of Artemisia ciniformis
Krasch. & Popov ex Poljakov
Sajjad Nasseri1,2, Seyed Ahmad Emami3, Mahdi Mojarrab2*©

1Students Research Committee, Kermanshah University of Medical Science, Kermanshah, Iran.
2Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
3Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.

A B S T R A C T
Background: Artemisia ciniformis (A. ciniformis) belongs to the genus Artemisia and grows at northeast of Iran. The current phytochemical study was carried out on the most potent extract in cell-free antioxidant assays.

Methods: Hydroethanolic extract of the aerial parts was fractionated using vacuum-liquid chromatography (VLC). The selected fraction from the previous cell-free antioxidant study was purified by semi-preparative HPLC. The structures of isolated compounds were identified using one- and two-dimensional NMR and ESIMS techniques.

Results: Three identified compounds in this study were the known isomers of dicaffeoylquinic acid (DCQ), including 3,5-DCQ (isochlorogenic acid A), 3,4-DCQ (isochlorogenic acid B) and 4,5-DCQ (isochlorogenic acid C).

Conclusion: The outstanding free radical scavenging potential in the hydroethanolic extract of A. ciniformis might be partly related to the presence of isochlorogenic acid derivatives.

Introduction
Artemisia as a genus belonging to the family Asteraceae, has been used in Iranian traditional medicine because of various attributed effects like antispasmodic, vermifuge and emmenagogue1 as well as hemostatic and laxative activities.² The genus is a rich source of plant secondary metabolites, including terpenoids, flavonoids, coumarins, caffeoylquinic acids, sterols and acetylenes.³ Artemisia ciniformis Krasch. & Popov ex Poljakov is one of wildly growing species in Iran.⁴ Dichloromethane and ethyl acetate extracts of A. ciniformis have been effective against AGS, MCF-7, and HeLa cell lines in cytotoxicity assay.⁵,⁶ In another study on various extracts of A. ciniformis, dichloromethane and petroleum ether extracts exhibited the highest toxicity against HL-60 and K562 cell lines, respectively.⁷ Ethanolic extract has shown leishmanicidal activity against promastigote forms of Leishmania major.⁸ Potential antimalarial activities of different extracts from Artemisia species were evaluated and the highest effect was observed in A. ciniformis dichloromethane extract.⁹ The volatile oil of this species has shown antimicrobial and cytotoxic activity against Acinetobacter baumannii and HeLa cell line, respectively.¹⁰ Another study suggested that the leaf volatile oil of A. ciniformis can be regarded as a bioactive source of antioxidant and antimicrobial agents.¹¹ Pretreatment of H9c2 cell line with ethyl acetate, ethanolic and hydroethanolic extracts of this species resulted in a significant increase in cell viability after exposure to hydrogen peroxide.¹² In another research, antioxidant capacity was evaluated in five extracts of A. ciniformis aerial parts via cell-free methods. Then, seven fractions were prepared from the most potent extract and their antioxidant capacities were evaluated by both cell-free and cell-based methods (in PC12 cell line). The results of cell-free methods indicated that the hydroethanolic extract and particularly one of its fractions (eluted by 60% methanol in water in a reversed phase vacuum liquid chromatography (VLC) system), possessed significant antioxidant activity and total phenolic contents.¹³ In spite of phytochemical studies conducted on the volatile oil of this species and reports on the presence of some mono and sesquiterpenes¹⁴,¹⁵, no study has so far tried to isolate and identify polar secondary metabolites. The present research reports the presence of three known isochlorogenic acid isomers (1-3) in A. ciniformis aerial parts.

Materials and Methods
Reagents and chemicals
All the solvents used for purification procedures were of gradient grade and purchased from Scharlau (Spain) and Caledon (Canada).
General experimental procedures

The chromatographic system for semi-preparative HPLC consisted of a binary pump YL 9111S, a PDA detector YL9160 and a VertiSep UPS C18 (250 x 30 mm i. d., 10 μm) column. An Ascentis E (250 x 10 mm i. d., 5 μm) column was replaced for final purification. NMR spectra were recorded on a Bruker AVANCE III 500 MHz spectrometer in dimethyl sulfoxide-d6 as the solvent and residual solvent signal used as internal standard. ESIMS data were obtained on an Esquire 3000 plus ion trap mass spectrometer (Bruker).

Plant materials

Aerial parts of A. ciniformis were collected from the Tandoreh National Park in Khorasan Razavi province in September 2011 and identified by Dr. Valiollah Mozaffarian (Iranian Research Institute of Forests and Rangelands). A voucher specimen (No. 12569) is preserved at the herbarium, Faculty of Pharmacy, Mashhad University of Medical Sciences, Iran.

Extraction and fractionation

In this study, the fraction residues obtained in the previous study were used. Briefly, hydroethanolic extract was obtained by maceration after successive extraction of dried and ground aerial parts with petroleum ether (40–60), dichloromethane, ethyl acetate, ethanol, and equal mixture of water–methanol in water as a mobile phase. Isolation procedure

Mozaffarian (Iranian Research Institute of Forests and Rangelands). Aerial parts of

Extraction and fractionation

In this study, the fraction residues obtained in the previous study were used. Briefly, hydroethanolic extract was obtained by maceration after successive extraction of dried and ground aerial parts with petroleum ether (40–60), dichloromethane, ethyl acetate, ethanol, and equal mixture of water–ethanol. The fractionation was carried out by reversed phase VLC method with rising ratios of methanol in water as a mobile phase.

Isolation procedure

300 mg of fraction E (eluted by 60% methanol in water in a reversed phase VLC system and was previously reported as the most potent fraction in cell-free antioxidant assays) was re-fractionated by semi-preparative HPLC (mobile phase: 0–50 min, MeOH from 20 to 70% in H2O; 50–51 min MeOH from 70 to 100% in H2O; 51–56 min 100% MeOH, flow rate 8 ml/min) to yield 10 subfractions. Further purification of the subtraction 3 (10.5 mg, Rf = 25.2 min) by semi-preparative HPLC (mobile phase: 0–30 min, MeOH from 10 to 100% in H2O; 30–35 min 100% MeOH, flow rate 3 ml/min) yielded compound 1 (7.1 mg, Rf = 14.0 min). Further purification of the subtraction 4 (16.0 mg, Rf = 29.0 min) by semi-preparative HPLC (mobile phase: 0–20 min, ACN from 10 to 28% in H2O; 20–24 min, 28% ACN in H2O; 24–26 min ACN from 28 to 100% in H2O; 26–33 min 100% ACN, flow rate 3 ml/min) yielded compounds 2 (5.8 mg, Rf = 14.2 min) and 3 (7.8 mg, Rf = 15.3 min). The structures of isolated compounds were elucidated by means of spectroscopic analysis including ESIMS, 1H- and 2D-NMR.

Results

This study led to the isolation of three compounds (isochlorogenic acids A, B and C) from hydroethanolic extract of A. ciniformis aerial parts (Figure 1).

The structural identification of the compounds

The chemical structures of isolated compounds were elucidated unequivocally through ESIMS and NMR and also all spectroscopic data were in agreement with respective published data.

Compound 1 (3, 5-dicaffeoylquinic acid): brown powder. ESI-MS (m/z): 515.2 [M-H]-, 1031.5 [2M-H]-. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.99–2.15 (4H, m, H-2 and H-6), 3.85 (1H, m, H-4), 5.18 (1H, m, H-5), 5.23 (1H, m, H-1), 6.18 (1H, d, J = 16.0 Hz, H-8″); 6.25 (1H, d, J = 16.0 Hz, H-8″); 6.78 (1H, overlapping signals (ov), H-5″), 6.79 (1H, ov, H-5″), 6.98 (1H, ov, H-6″), 6.99 (1H, ov, H-6″), 7.06 (1H, br s, H-2″), 7.07 (1H, br s, H-2″), 7.46 (1H, d, J = 16 Hz, H-7″), 7.49 (1H, d, J = 16 Hz, H-7″); 13C-NMR (data from HSQC and HMBC spectra, DMSO-d6) δ (ppm): 35.5 (C-2), 37.0 (C-6), 68.5 (C-4), 71.5 (C-3 and C-5), 114.8 (C-8″), 115.0 (C-2″), 115.1 (C-2″), 115.2 (C-8″), 116.5 (C-3′ and C-5″), 122.0 (C-6′ and C-6″), 125.3 (C-1′) and C-1″, 125.7 (C-1″), 145.0 (C-7′ and C-7″), 145.6 (C-3′ and C-3″), 148.3 (C-4″), 148.4 (C-4″), 165.0 (C-9″), 166.0 (C-9″), unobserved signals (C-1 and C-7).

Figure 1. Chemical structures of isolated compounds from the aerial parts of A. ciniformis.
Dicaffeoylquinic Acids from Artemisia ciniformis

Compound 2 (3, 4- dicaffeoylquinic acid) : brown powder. ESI-MS (m/z): 515.2 [M-H], 1031.5 [2M-H]. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 2.00-2.20 (4H, m, H-2 and H-6), 4.13 (1H, m, H-5), 4.98 (1H, m, H-4), 5.48 (1H, m, H-3), 6.21 (1H, d, J = 16.0 Hz, H-8); 6.26 (1H, d, J = 16.0 Hz, H-7); 6.77 (2H, d, J = 8 Hz, H-5′ and H-6′), 6.94 (1H, br d, J = 8 Hz, H-6′), 6.96 (1H, br d, J = 8 Hz, H-6′), 7.05 (1H, br s, H-2′), 7.06 (1H, br s, H-2′), 7.47 (1H, d, J = 16 Hz, H-7′), 7.49 (1H, d, J = 16 Hz, H-7′) δ (ppm): 2.19 (2H, br s, H-3), 63.7 (C-3), 64.6 (C-6), 67.7 (C-3), 72.8 (C-1), 73.2 (C-4), 114.0 (C-8′), 114.2 (C-8′), 114.7 (C-2′), 114.8 (C-2′), 131.4 (C-6′), 121.5 (C-6′), 125.4 (C-1′), 125.5 (C-1′), 145.2 (C-7′), 145.4 (C-7′), 145.6 (C-3′ and C-3′), 148.4 (C-4′ and C-4′), 165.9 (C-9′ and C-9′), unobserved signal (C-7).

Compound 3 (4, 5- dicaffeoylquinic acid): brown powder. ESI-MS (m/z): 515.2 [M-H], 1031.5 [2M-H]. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 2.00-2.20 (4H, m, H-2 and H-6), 4.27 (1H, m, H-3), 5.04 (1H, m, H-4), 5.48 (1H, m, H-5), 6.18 (1H, d, J = 16.0 Hz, H-8); 6.26 (1H, d, J = 16.0 Hz, H-8); 6.78 (2H, d, J = 7.5 Hz, H-5′ and H-6′), 6.95 (2H, ov, H-6′ and H-6′), 7.06 (2H, br s, H-2′ and H-2′), 7.47 (1H, d, J = 16.0 Hz, H-7′), 7.53 (1H, d, J = 16 Hz, H-7′) δ (ppm): 2.19 (2H, br s, H-3), 63.7 (C-3), 64.6 (C-6), 67.7 (C-3), 72.8 (C-1), 73.2 (C-4), 113.6 (C-8′), 113.9 (C-8′), 114.9 (C-2′ and C-2′), 115.9 (C-5′ and C-5′), 121.5 (C-6′ and C-6′), 125.5 (C-1′ and C-1′), 145.6 (C-7′ and C-7′), 145.6 (C-3′ and C-3′), 148.5 (C-4′ and C-4′), 165.6 (C-9′), 166.1 (C-9′), 174.8 (C-7).

Discussion

The semi-preparative HPLC of fraction E (eluted by 60% methanol in water in a reversed-phase VLC) resulted in the isolation of three dicaffeoylquinic acids. The structures of isolated compounds were elucidated by ESIMS, 1H- and 2D-NMR. All compounds exhibited the same pseudo-molecular-ion peak at m/z 515.2 [M-H]-, in their ESI-MS, representing the molecular formula C25H32O12, which was consistent with the presence of two attached caffeoyl moieties on quinic acid.

The 1H NMR spectrum of all compounds showed the presence of two caffeoyl groups. The large coupling constants (J = 16.0 Hz) indicated trans-geometries of the double bonds in caffeoyl moieties. The linkage positions of caffeoyl groups were determined on the basis of the observed HMBC correlations between H-atoms of quinic acid (H-3, H-4, and H-5) and C-9′ or C-9″. The signals of the H-atoms (H-3, H-4, and H-5) in compound 1 were observed between 3.85 and 5.23 ppm, while the same H-atoms in compound 2 resonated between 4.13 and 5.48 ppm. The signals of the intended H-atoms in compound 3 were observed between 4.27 and 5.48 ppm. The up field protons were H-4 in compound 1, H-5 in compound 2, and H-3 in compound 3. An up field shift was observed for alcoholic carbons (C-4 in compound 1, C-5 in compound 2 and C-3 in compound 3) while γ effect resulted in a downfield shift for C-6 and C-2 in compounds 2 and 3 (in comparison with corresponding carbon atoms in compound 1), respectively. These facts, along with the comparison of the rest of spectroscopic data with those reported in literature, allowed identification of 1, 2 and 3 as 3,5-di-O-cafeoylquinic acid (3,5-di-CQA), 3,4-di-O-cafeoylquinic acid (3,4-di-CQA) and 4,5-di-O-cafeoylquinic acid (4,5-di-CQA), respectively. There is no previous report on the presence of three DCQ acid isomers (isochlorogenic acids A-C) in A. ciniformis, but these phytochemicals have been proven to be present in some other species of the genus like A. pectinata, A. selengensis and A. annua.

The compounds have shown valuable effects such as inhibition of natural protein tyrosine phosphatase 1B, 3α-Amylase and α-glucosidase, aldose reductase, potent activity against HBV DNA replication, and antioxidant activity in different species of Artemisia. 3,4-DCQ is known as a strong inhibitor of the peroxidation process. In comparison with chlorogenic acid, isochlorogenic acid derivatives like 3,4-DCQ and 3,5-DCQ demonstrated significantly higher DPPH radical-scavenging and inhibitory activities against cholesteryl ester hydroperoxide formation in copper ion-induced oxidation of diluted rat blood plasma. Scavenging actions of the isomers for superoxide anion have been reported stronger than that of ascorbic acid.

In the present study, three isochlorogenic acid isomers were isolated and identified from the active fraction in cell-free antioxidant assays which corroborated previous reports on the biological effects of the these compounds and their distribution in the genus Artemisia.

Conclusion

The antioxidant activities reported from A. ciniformis are probably associated with the presence of various DCQ isomers, which can affect the bioactivity potential of hydroethanolic extract from this species.

Acknowledgments

The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences for the financial support.

Conflict of interests

The authors claim that there is no conflict of interest.

References

1. Miralde E, Ferri S, Mostaghimi V. Botanical drugs and preparations in the traditional medicine of West Azerbaijan (Iran). J Ethnopharmacol. 2001;75(2-3):77-87. doi:10.1016/s0378-8741(00)00381-0

