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Introduction 

It is widely believed that vanadium as an essential trace 

element may cause neurotoxic effects such as learning 

and memory impairments in animal models.1-3 There have 

been great interests on the toxic properties of vanadium 

compounds in mammals.4 It has been shown that exposure 

to vanadium led to disturbances in human motor activities 

and visual memory deficits.5 On the other hand, damage 

to the hippocampus, which is critical for spatial learning 

and memory processes, causes behavioral changes and 

learning deficits.6,7 It has also been noted that vanadium 

exposure can lead to hippocampal CA1 damage in mice.1,4 

 In recent years, numerous studies have demonstrated the 

crucial role of nitric oxide (NO) in pathological effects in 

the CNS.8 The alteration of NO has been shown in several 

CNS diseases such as depression, seizure and 

neurodegenerative disorders.9-11 Different evidences 

suggested the importance of NO for synaptic plasticity in 

several brain regions such as the cerebellum and 

hippocampus.8,12,13 Endothelial nitric oxide synthase 

(eNOS), neuronal NOS (nNOS) and inducible NOS 

(iNOS) are three nitric oxide synthase isoforms.14,15 All 

the three isoforms are expressed in the brain throughout 

aging and pathologic conditions.10,15,16 Among these 

isoenzymes, iNOS plays roles in various inflammatory 

and patho-physiological processes8 and also in 

oxidative/nitrosative induced cytotoxicity.17  The 

expression of iNOS has been documented in the dentate 

gyrus and CA1 region of the hippocampus.18 

Furthermore, it has been established that selective iNOS 

inhibitors such as aminoguanidine (AG) can ameliorate 

amyloid beta (Aβ)-induced cholinergic system 

dysfunctions.18 

A B S T R A C T 

Background: Vanadium is a potential neurotoxic agent widely distributed in the 

environment. Understanding the neurotoxic mechanisms of vanadium on learning and 

memory seems necessary.  

Methods: We investigated the time-dependent (1-week, 2- week and 4-week) effects of 

sodium metavanadate (SMV) (25 mg/kg/day; pre-training oral administration) and 4-day 

intraperitoneal injections of aminoguanidine (AG) as a selective inducible nitric oxide 

synthase inhibitor (10, 50, and 100 mg/kg) on spatial memory retention in Morris water 

maze. Animals were trained for 4 days and tested 48 h after the last training trial.  

Results: The data showed that 4-week oral pre-treatment with SMV (25 mg/kg/day) 

induced spatial memory retention deficits and decreased the time spent in the target 

quadrant. We found that 4-day administration of different doses of AG during training trials 

significantly decreased the time and distance of finding the hidden platforms. Additionally, 

SMV-induced spatial memory retention impairments were prevented in animals received 

combined SMV (25 mg/kg/day, 4 weeks) and AG (10 mg/kg/day, 4 days). 

Conclusion: Our findings showed the protective role of AG on SMV-induced spatial 

memory retention deficits. 
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We previously reported that oral administration of sodium 

metavanadate (SMV) solution (25 mg/kg/day for 2 

weeks) significantly impaired spatial learning in an 

acquisition model of Morris water maze (MWM). 

Furthermore, we demonstrated this impairment could be 

attenuated by nicotine via increased expression of Choline 

Acetyl Transferase (ChAT) and Vesicle Acetyl Choline 

Transporter (VAChT) as cholinergic markers in 

hippocampus.1 Moreover, we have previously shown the 

protective effects of iNOS inhibitors on spatial learning 

and memory.19 In this regard, we also demonstrated that 

1400W, as a selective iNOS inhibitor, could interact with 

cAMP-protein kinase A (PKA) signalling pathway to 

protect H-89 (protein kinase AII inhibitor) -induced 

memory loss via the activation of the transcription factor 

cAMP response element binding protein (CREB) and 

cholinergic system alteration.8 Considering our previous 

observations, the main objective of the present study was 

to investigate the probable time-dependent effects of 

SMV on spatial memory retention and potential protective 

effects of AG as a selective iNOS inhibitor on SMV-

induced spatial memory retention deficits in MWM. 

 

Materials and Methods  

Experimental animals 

Male Wistar rats (200–250 g) were provided by the 

Faculty of Pharmacy, Zabol University of Medical 

Sciences. The animals were housed and adapted to the 

laboratory conditions (12-h light/12-h dark cycle; room 

temperature (20-22oC)) with free access to food and 

water. All the experimental protocols were carried out 

according to the guidelines of the Ethical Committee for 

the Care and Use of Laboratory Animals of Zabol 

University of Medical sciences. All animal experiments 

were done during the light cycle.  

 

Drugs 

SMV and AG were obtained from Sigma (St. Louis, Mo, 

USA) and dissolved in tap water and saline respectively 

to obtain desirable concentrations.  

 

Behavioral training and testing 

All the experiments were performed with 8 animals per 

each group. The experimental groups have been indicated 

in Table 1. 

The effects of SMV on memory retention 

Fresh solutions of SMV (25 mg/kg) were prepared daily 

just before administrations. The drug was orally gavaged 

daily for either one, two or four weeks. The training trials 

were performed on the days 4th, 11th and 25th and 

continued for 4 days (each day included one block of 4 

trials) in MWM. The details of the water maze and 

performance of training sessions were described in our 

previous studies.1,19-21 Spatial memory retention test was 

performed 48 h after the last training trial. The Ethovision 

tracking system (Noldus Information Technology, 

Wageningen, Netherlands) was applied to investigate 

behavioral parameters of spatial memory retention. 

Control animals received tap water by gavage for the 

same period of time. In testing trials, one block, including 

four trials was evaluated. As a probe test, after completion 

of spatial memory retention assessments, the platform 

was removed out of the task and the time spent in target 

quadrant (the quadrant that hidden platform was 

previously located there) was investigated. 

 

Effects of AG on spatial memory 
To assess this, 4-day training trials were conducted in a 

similar manner as described above. AG (either 10, 50, or 

100 mg/kg) was injected intraperitoneally. Spatial 

memory retention test was performed 48 h after the last 

training trial. One block, including four trials, was 

assessed. In the fourth group as control, the animals 

received saline.  

 

SMV-AG co-administration 
Animals received oral fresh solutions of SMV (25 

mg/kg/day) using gavage needles for 4 consecutive 

weeks. On the day 25th, the 4-day training of animals was 

started in MWM. On the day 25th onward, AG (10 

mg/kg/day) was intraperitoneally injected for 4 

consecutive days at 15 min prior to SMV oral 

administrations. Spatial memory retention test was 

performed 48 h after to the last training trial as described 

previously. 

 

Statistical analysis 

SPSS 19 software and Graph Pad Prism 5 were used for 

statistical analysis. 

 

Table 1. Experimental groups in the study. 

Groups Treatments  Route  Duration Training trials  Spatial memory test  

 SMV* 

SMV 25mg/kg/day Oral Gavage 
One week 
Two weeks 
Four weeks 

4-7th 
11-14th 
25-28th 

48 h after the last training trial 

Control 
Oral Gavage of Tap 
Water 

One week 
Two weeks 
Four weeks 

4-7th 
11-14th 
25-28th 

48 h after the last training trial 

AG 

AG(10 mg/kg/day) i.p. Four days Continuous 48 h after the last training trial 

AG(50 mg/kg/day) i.p. Four days Continuous 48 h after the last training trial 

AG(100 mg/kg/day) i.p. Four days Continuous 48 h after the last training trial 

Control (saline) i.p. Four days Continuous 48 h after the last training trial 

SMV-AG 
SMV (25mg/kg/day) + AG  
(10 mg/kg/day) 

SMV: oral Gavage 
AG: i.p.† 

SMV: Four weeks 
AG: Four days 

25-28th  48 h after the last training trial 

* SMV: Sodium metavanadate, AG: aminoguanidine; †: AG was administrated 15 minutes prior to SMV oral Gavage on the days 25-28th 
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Figure 1. Time-dependent effects of oral administration of sodium metavanadate on spatial memory retention in MWM. Average of escape 
latency, traveled distance and swimming speed for 1week (A-C), 2weeks (D-F) and 4weeks (G-I) sodium metavanadate (SMV, 25mg/kg/day) 
pre-treated animals 48 h later to last training trial in MWM. Each value represents the mean ± SEM from 8 animals. **p< 0.01 significantly 
different from its related control group. 

 

Independent sample student t-test (for comparison 

between two groups) and one-way analysis of variance 

(ANOVA) followed by Newman–Keuls post hoc test 

were used for comparison of behavioral findings. A P-

value < 0.05 was considered as statistically significant. 

 

Results  

Time-dependent effects of SMV on spatial memory 

retention  

One- and two-week administrations of SMV did not 

induce any significant changes in the time and distance 

parameters in comparison with their control groups, 

respectively (Figure 1A, 1B, 1D, and 1E). However, four-

week oral administration of SMV (25 mg/kg) 

significantly increased the time and distance spent to find 

the hidden platforms compared to the control group 

(**p<0.01, Figure 1G and 1H). 

The swimming speed was similar between SMV-treated 

and control animals representing no motor disturbances 

(Figure 1C, 1F and 1I).  

In addition, four weeks oral administration of SMV (25 

mg/kg) significantly decreased the time spent in the target 

quadrant in probe test compared to the control group 

indicating impaired spatial memory retention in MWM 

(**p<0.01, Figure 2).  

 

The effects of intra-peritoneal injection of AG on spatial 

memory retention in MWM 

Four-day intra-peritoneal injection of AG (either 10, 50 or 

100 mg/kg) significantly decreased the time and distance 

for finding the hidden platforms compared to the control 

group (Figure 3A and 3B). 
 

 
Figure 2. Time-dependent effects of oral administration of sodium 
metavanadate on spent time in the target quadrant in MWM at 
1week (A), 2 weeks (B) and 4 weeks (C). Sodium metavanadate 
was administrated at the dose of 25 mg/kg/day. Each value 
represents the mean ± SEM from 8 animals. **p< 0.01 
significantly different from its related control animals. 
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Figure 3. The effects of four-day intra-peritoneal injection of aminoguanidine (AG) on spatial memory retention parameters 
(48 h later to last training trials) and time spent in the target quadrant in probe tests. Escape latency (A), traveled distance (B), 
swimming speed (C), time spent in target quadrate (D). Each value represents the mean ± SEM from 8 animals. *p<0.05, **p< 
0.01 and ***p<0.001 are significantly different from control animals. 

 

The swimming speed was not affected by AG 

administration (Figure 3C).  

Also, four-day intraperitoneal injections of AG (either 10, 

50 or 100 mg/kg) significantly increased (*p<0.05, 

**p<0.01 and **p<0.01, respectively) the time spent in 

the target quadrant in probe test compared to the control 

group (Figure 3D). 

 

Dose-dependent protective effects of AG on SMV-

induced impairments of spatial memory retention in 

MWM 

The SMV-induced spatial memory retention deficits were 

significantly improved in animals received four-day intra-

peritoneal injection of AG (10 mg/kg) along with 4-week 

SMV (25 mg/kg/day) compared to control group (p<0.01, 

Figure 4A and 4B). Also, four-day intra-peritoneal 

injection of AG (10 mg/kg) along with SMV 

(25mg/kg/day for 4 weeks) significantly increased the 

time spent in the target quadrant in probe test compared 

to SMV treated animals (P<0.001, Figure 4C). 

 

Discussion 

We have previously demonstrated that pre-training oral 

administration of SMV (25 mg/kg) impaired the spatial 

memory acquisition in MWM and decreased ChAT and 

VAChT protein expressions as cholinergic system 

markers in the CA1 region of the hippocampus and medial 

septal area.1 In the present study, we observed that four 

weeks administration of SMV induced memory deficit in 

a time dependent manner in MWM. This is while one- and 

two- week pre-treatment of SMV did not induce deficits 

on memory retention.  

It has been shown that vanadium inhalation caused time 

dependent loss of dendritic spines in the hippocampus 

correlating with spatial memory 

impairment.4  Conversely, Chen et al. indicated that 

vanadium improved the spatial learning and memory by 

interacting with the cAMP response element binding 

protein (CREB) pathway in diabetic mice.22 In spite of the 

contraindicating neurodegenerative and neuroprotective 

effects of vanadium compounds, a complete explanation 

of underlying mechanisms has yet to be understood.1,4,23-

26 In agreement with our findings, it has been shown that 

the effects of vanadium compounds on CNS are mainly 

dependent on both the dose and the route of drug 

administration.1 Experimental and histochemical studies 

have shown that reactive oxygen species are increased in 

SMV-treated rats.27  

In this study, we examined the effects of four-day 

intraperitoneal injection of AG on spatial memory 

retention in MWM. 

Behavioral findings showed that AG decreased the time 

and distance of finding the hidden platforms 48 hours 

after the last training session. Numerous studies have 

suggested different possible mechanisms underlying the 

protective effects of this iNOS inhibitor on memory.8    
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Figure 4. Effects of four-day coadministration of aminoguanidine (AG; 10 mg/kg, i.p) and sodium metavanadate (SMV; 25mg/kg/day for 4 
weeks) on spatial memory retention parameters (48 h later to last training trials) and time spent in target quadrant in probe tests. Escape 
latency (A), traveled distance (B), time spent in target quadrate (C). Each value represents the mean ± SEM from 8 animals. *p<0.05, **p< 
0.01 are significantly different from vehicle control animals. Also, ##p<0.01 and ###p<0.001 are significantly different from SMV pre-treated 
animals.  
 

It has been reported that administration of 

peroxovanadium (pV) induced the expression of iNOS in 

mice livers and AG as a selective iNOS inhibitor reversed 

pV-induced iNOS expression.28 Nitric oxide attenuates 

neurotransmitter re-uptake in glutaminergic and 

dopaminergic systems, which could negatively affect 

postsynaptic receptor regulation involved in memory 

formation.8 Gene expression studies have described that 

the training in MVM could strongly induce iNOS.29-32 

Infusion of Aβ (amyloid beta) 1-40 to the brain (as a 

model of Alzheimer’s disease)  resulted in iNOS 

expression and cholinergic system dysfunction 

accompanied by memory loss.18 

A considerable body of evidence has well evaluated the 

importance of the cholinergic system in spatial memory 

using the MWM task.19,21,33 On the other hand, it has been 

demonstrated that AG can facilitate the Aβ-induced 

cholinergic system dysfunction.18 Other experimental 

studies have shown an interaction between iNOS and 

acetylcholine esterase activity.34 Moreover, nitric oxide 

produced by iNOS contributes to the inflammation and 

production of destructive free radical agents which may 

negatively impact memory function.8,9 Thus, these 

implications suggest that AG-induced spatial memory 

retention improvement in MWM may be due to the 

inhibition of iNOS activity. Accordingly, there are some 

studies which reported protective effects of different NOS 

inhibitors on memory and neurodegenerative 

diseases.8,9,15 Also, it has been shown that iNOS impaired 

spatial memory function by inducing cell death through 

increasing the synthesis of nitric oxide and pro-

inflammatory cytokines.35 

Our data showed that AG improved SMV-induced 

memory retention deficit by decreasing escape latency 

and travelled distance to the control levels. The biological 

effects of SMV and nitric oxide pathway are 

interrelated.36,37 In line, our results indicated that 

vanadium may induce spatial memory retention deficit at 

least in part by affecting nitric oxide pathway and 

increasing the expression of iNOS.  

Vanadium compounds may further lead to amyloid plaque 

formation through induction of oxidative stress leading to 

memory loss.38  

 

Conclusion 

In the present study, behavioral analyses in MWM 
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revealed that AG, as a selective iNOS inhibitor, reversed 

SMV-induced spatial memory retention deficits. With 

regards to the effects of SMV on nitric oxide, oxidative 

defense systems and cholinergic signaling pathway, it is 

reasonable to mention that AG may protect SMV-induced 

spatial memory retention deficits via interaction with 

cholinergic system and nitric oxide pathways. However, 

to confirm the behavioral observations of this study, 

molecular studies can be helpful to clarify the precise 

mechanisms underlying these findings. 
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