Research Article

Cytotoxic Flavonoids from the Aerial Parts of *Stachys lavandulifolia* Vahl
Mohammad-Reza Delnavazi¹, Parisa Saniyarsaraí¹, Saeedeh Jafari-Nodooshan², Mahnaz Khanavi¹, Saeed Tavakoli¹, Hormoz Hadavinia¹, Narguess Yassa*¹

¹Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
²Department of Medicinal Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Background: *Stachys lavandulifolia* Vahl is a herbaceous plant distributed in the west and south-western Asia. Despite of the wide medicinal uses, there are some reports on toxicity potential of this plant. In present study we attempted to evaluate the toxicity and to characterize the cytotoxic principles of *S. lavandulifolia*.

Methods: Brine shrimp lethality test (BSLT) was used to evaluate the general toxicity of the extracts and essential oil obtained from the aerial parts of *S. lavandulifolia*. Phytochemical constituents of the active extract were investigated using various chromatographic and spectroscopic methods. GC and GC-MS were also used to analyze the plant essential oil. GC and GC-MS were used to analyze the plant essential oil. Cytotoxic activities of the isolated compounds were also evaluated using MTT assay method.

Results: In brine shrimp lethality test (BSLT), chloroform extract and the plant essential oil exhibited the most toxicity against Artemia salina larvae (LD₉₀: 121.8±5.6 and 127.6±14.7 µg ml⁻¹, respectively). GC and GC-MS analyses of essential oil led to the characterization of forty compounds of which α-bisabolol (23.85%) and thymol (17.88%) were identified as the main constituents. Nine flavonoids, Pachypodol (1), chrysosplenetin (2), kumatakenin (3), velutin (4), penduletin (5), viscosine (6), chrysoeriol (7), hydroxygenkwanin (8) and apigenin (9) were isolated from the chloroform extract of *S. lavandulifolia*. Among the isolated compounds, chrysosplenetin (2), a polymethoxylated flavonoid, was found as the most toxic compound toward MDA-MB-23 and HT-29 cells, with IC₅₀ values of 88.23 and 116.50 µg ml⁻¹, respectively. Furthermore, chrysosplenetin (2), kumatakenin (3) and viscosine (6) with selectivity indices of 2.70, 2.59 and 3.33, respectively, showed higher preferential toxicity against MDA-MB-23 cells in comparison with tamoxifen (SI:2.45).

Conclusion: This study reports methoxylated flavonoids as compounds which could be involved in toxicity of *S. lavandulifolia*. The results of MTT assay also suggest some of these compounds as appropriate candidates for anti-cancer drug development research.

Introduction

The genus *Stachys* L. with about 300 species all over the world is one of the largest genera of Lamiaceae (alt. Labiatae) family.¹ *Stachys lavandulifolia* Vahl from this genus is a perennial herbaceous plant distributed in Iran, Turkey, Iraq, Caucasia and central Asia.² This species has been described under the name of "Marmazad" in Old Persian medicinal literature, useful in the treatment of liver, stomach and uterus diseases and as liver tonic, gastrotonic and emmenagogue agent.³ In different parts of Iran and Anatolia the flowering aerial parts of *S. lavandulifolia* is used as a popular herbal tea for its sedative, gastrotonic and spasmytotropic properties, as well as for the treatment of some gastrointestinal disorders, colds and flu.⁴,⁶

So far different biological and pharmacological effects such as antioxidant,⁷ antimicrobial,⁷,⁸ anxiolytic,⁹,¹⁰ wound healing,¹¹ gastroprotective,¹² analgesic,¹³ anti-inflammatory,¹⁴ anti-tyrosinase⁰ and acetylcholinesterase inhibitory¹⁴ activities have been documented for the various extracts obtained from the aerial parts of *S. lavandulifolia*. The results of clinical trials have also confirmed the therapeutic value of this species in abnormal uterine bleeding caused by polycystic ovary syndrome and as a useful supplement in management of diseases related to oxidative stress.¹⁵,¹⁶ Previous phytochemical investigations on *S. lavandulifolia* have led to the isolation of four phenylethanoid glycosides; lavandulifoliosides A and B, verbascoside and leucosceposide A, three iridoid

Corresponding Author: Narguess Yassa, E-mail: yasa@sina.tums.ac.ir

©2018 The Authors. This is an open access article and applies the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
glycosides; monomelittoside, melittoside, 5-allosyloxy-
auccin, a diterpenoid; stachysolone and a phenolic
glycoside; arbutin from its aerial parts.14,17 Two flavonoid
derivatives, apigenin and luteolin, have also been
determined using HPLC in the hydroalcoholic extract of
\textit{S. lavandulifolia}.18 Furthermore, chemical constituents of
this plant essential oil have been reported from different
regions of Iran.19-23

Despite of medicinal uses and beneficial health effects of
\textit{S. lavandulifolia}, there are some reports on toxicity
potential of this plant species.24-26 It has been
demonstrated that peroral administration of
hydroalcoholic extract of \textit{S. lavandulifolia} with doses
higher than 140 mg/kg/day could be resulted in significant
subacute and subchronic toxicity in female mice.26 In
another study, the hydroalcoholic extract of \textit{S. lavandulifolia} aerial
parts was found hepatotoxic in a dose dependent
manner, following administration at the doses
50-200 mg/kg, intraperitoneally for 28 days.24 Regarding
to the lack of information about compounds involved in
the toxicity properties of \textit{S. lavandulifolia}, the present
study was designed to assess toxicity and to identify of
cytotoxic principles of this species using a bioassay
guided approach.

\section*{Materials and Methods}

\subsection*{Plant material}
The aerial parts of \textit{S. lavandulifolia} Vahl were collected
during its flowering stage from Ghotour region (Khoy,
West-Azerbaijan, Iran) in Jun 2014. The plant sample was
authenticated by botanist Dr. Yousef Ajani and its
specimen was deposited at the herbarium of Institute of
Medicinal Plants, ACECR, Karaj, Iran (Voucher no. 2014
MPIH).

\subsection*{Essential oil preparation}
The essential oil of the plant was extracted by
hydrodistillation of the air-dried and powdered aerial
parts (100 g) using a Clevenger-type apparatus for 4 h.
The obtained essential oil was dried over the anhydrous
sodium sulfate and stored in 4 °C until analysis.

\subsection*{Extraction}
The air-dried and comminuted plant (1.2 kg) was
macerated with petroleum ether, chloroform, ethyl acetate
and methanol:water (8:2), successively (3× 15 L each) at
the room temperature. The four obtained extracts were
concentrated using a rotary evaporator under a low
pressure at 45 °C.

\subsection*{Brine shrimp lethality test}
General toxicity potentials of the plant extracts and
esential oil were evaluated in brine shrimp lethality test
(BSLT).27 The brine shrimp (\textit{Artemia salina} L.) eggs
were hatched in sterile artificial seawater (38 g L-1, adjusted
to pH 9 with NaHCO\textsubscript{3}) under the constant aeration for 48
hours at 30 °C. the plant samples (50 mg) were dissolved
in DMSO (200 µl) and tween 80 (~50 µl) and then diluted
by freshly prepared artificial sea water to obtain the
solutions with 10, 100, 300, 500, 700 and 1000 µg ml-1
concentrations in a series of tubes containing about 20
active nauplii in each. The surviving nauplii in test and
control tubes were counted following the incubation of
the tubes at 30 °C for 24 hours under light to achieve the
LD\textsubscript{50} value, expressing the concentration causing 50%
lethality. Podophyllotoxin, a natural compound with
known cytotoxic activity, was applied as positive control.
The assays were performed in triplicate and the LD\textsubscript{50}
values were reported as Mean ± SD.

\section*{Phytochemical analyses}
Chloroform extract and essential oil of the plant with the
highest toxicity effects (Table 1) were subjected to
phytochemical analyses using various chromatographic
and spectroscopic methods.

\begin{table}[h]
\centering
\caption{Toxicity of the extracts and essential oil of \textit{S. lavandulifolia} in BSLT.}
\begin{tabular}{ll}
\hline
\textbf{Samples} & \textbf{Brine Shrimp lethality} \\
& \textbf{LD\textsubscript{50} (µg ml-1)} \\
\hline
Petroleum ether extract & 685.4 ± 12.2 \\
Chloroform extract & 121.8 ± 5.6 \\
Ethyl acetate extract & 704.4 ± 16.8 \\
Hydroalcoholic extract & 1000 < \\
Essential oil & 127.6 ± 14.7 \\
Podophyllotoxin (Positive control) & 3.1 ± 0.6 \\
\hline
\end{tabular}
\end{table}

\section*{GC and GC-MS analyses}
The essential oil was analysed on a HP 6890 gas
chromatograph equipped with HP-5MS column (30m
×0.25 mm id, 0.25µm), connected to HP 5973 mass
detector (70 eV) under the following conditions; carrier
gas: helium (1 ml min-1), temperature program: 40 °C to
250 °C at 3 °C per min, injector temperature: 250 °C,
injection volume: 1 µl, split ratio: 1:90. The Kovats
retention indices (KI) of the compounds were calculated
using a homologous series of \textit{n}-alkanes injected in
conditions equal to the sample. Identification of the
compounds was carried out based on computer matching
with the Wiley7nL library, as well as by comparison of
KIs and fragmentation pattern of the mass spectra with
those published for standard compounds.28 For
quantitative purposes, the essential oil was also analysed
by GC-FID with the same conditions described above for
GC-MS.

\section*{Isolation and purification of the compounds}
Chloroform extract (12.6 g) was moved on a silica gel
column (230-400 mesh, Merck, Germany) and eluted by
CHCl\textsubscript{3}-EtOAc (10:0-5:5) to three main fractions (C\textsubscript{1}-C\textsubscript{3}).
Silica gel column chromatography of a portion of the
fraction C\textsubscript{2} (1.5 g) with CHCl\textsubscript{3}-EtOAc (9:1-7:5-2:5)
yielded nine fractions (C\textsubscript{2A}-C\textsubscript{2I}). Compound I (5 mg) was
purified using preparative thin layer chromatography
(PTLC) (Handmade plates, Silica gel 60 GF\textsubscript{254}, Merck,
Germany) from the fraction C\textsubscript{2B} (18 mg) with CHCl\textsubscript{3}-
EtOAc (8:2), as a solvent system. Fraction C\textsubscript{2E} (320 mg)
was chromatographed over the silica gel column and
eluted with CHCl\textsubscript{3}-EtOAc (7.5:2:5) to get three fractions
(C\textsubscript{2E1}-C\textsubscript{2E3}). Elution of the fraction C\textsubscript{2E3} (135 mg) over a
Cytotoxic Flavonoids from Stachys lavandulifolia

Sephadex LH-20 column (Fluka, Switzerland) with MeOH-EtOAc (8:2) resulted in isolation of compounds 2 (23 mg), 3 (18 mg) and 4 (20 mg). Fraction C3 afforded 175 mg of yellowish powder which was purified on a PTLC plate with CHCl3-EtOAc (8:2) to obtain compound 5 (51 mg). Compound 6 (43 mg) was also obtained from the fraction C3 (160 mg) over a Sephadex LH-20 column, eluted with MeOH. silica gel column chromatography of the fraction C3 (270 mg) with CHCl3-MeOH (9.5:0.5) yielded three fractions (C1a-C3c). Fractions C3b (42) and C3c (28) were individually moved on Sephadex LH-20 columns and eluted with MeOH-EtOAc (8:2) to get a mixture of the compounds 7 and 8 (9 mg) (5.3:4.7), as well as compound 9 (6 mg), respectively. In all steps, chromatography was monitored by thin layer chromatography (TLC) on Pre-coated Silica gel GF254 sheets (Merck, Germany) and the spots were detected under UV (254 and 366 nm) and by spraying anisaldehyde/H2SO4 reagent. 1H-NMR and 13C-NMR spectra of the isolated compounds were obtained on a Bruker Avance DRX 300 and 500 spectrometers. UV spectra were recorded on a CECIL 7250 spectrophotometer in methanol and after the addition of shift reagents (NaOMe, NaOAc and AlCl3). EIMS spectra were also acquired on a HP 5973 system.

MTT assay

Two cancerous cell lines, MDA-MB-231 (Human breast cancer) and HT-29 (Human colon adenocarcinoma) and one normal cell line, MRC-5 (Human fetal lung fibroblasts) were obtained from Pasteur Institute, National Cell Bank of Iran Tehran, Iran. All cell lines were cultured for 24 hours in Roswell Park Memorial Institute (RPMI) medium containing different concentrations of test compounds and incubated for 24 h at 37°C. The cells were then treated with fresh medium and maintained in a humidified atmosphere at 37°C in a 5% CO2 incubator.

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cytotoxic activity of the isolated flavonoids on two cancer cell lines, MDA-MB-231 and HT-29, and one normal cell line, MRC-5. Cells were seeded in 96-well plates containing RPMI medium and incubated for 24 h at 37°C. The cells were then treated with fresh medium containing different concentrations of test compounds in triplicates. After 24 h the medium was changed by phosphate-buffered saline (PBS) medium containing MTT (10μl, 5mg/ml) and incubated for additional 3 h. Afterwards, the formazan crystals produced from MTT were completely dissolved in DMSO, and their absorbance was recorded at 630nm using microplate reader (Anthons 2020, version 1.8.3, UK). The cell viabilities were calculated by the following formula:

Relative viability (%) = (Absorbance of the test /Absorbance of the control) ×100. IC50 value was defined as the concentration of the compounds (in µg ml−1) which caused a 50% reduction in the number of viable cells relative to the negative control. Tamoxifen was used as positive control.

Results

General toxicity

The results of general toxicity assay of the plant samples in brine shrimp lethality test have been shown in Table 1. Among the tested samples, chloroform extract and the plant essential oil with LD50 values of 121.8 ± 5.6 and 127.6 ± 14.7 µg ml−1, respectively, exhibited the most toxicity effects against Artemia salina larvae, in comparison with podophyllotoxin (LD50 value; 3.1 ± 0.6 µg ml−1).

Essential oil composition

Hydrodistillation of the plant aerial parts led to the extraction of a pale yellowish oil with a yield of 0.3% (V/W). Forty compounds representing 88.15% of the total oil were characterized as a result of GC and GC-MS analyses of the essential oil (Table 2).

Isolation and purification of compounds

Phytochemical investigation of the chloroform extract, as the most toxic extract of S. lavandulifolia aerial parts, resulted in the isolation of nine compounds (1-9). The structures of the isolated compounds were identified as pachypodol (1), chrysoespermen (2), kemukatakenin (3), velutin (4), penduletin (5), viscosine (6), chrysoeriol (7), hydroxyegenkwanin (8) and apigenin (9), using 1H-NMR, 13C-NMR, UV and EIMS spectral analyses, as well as by comparison of their spectroscopic data with those published in literature (Figure 1).

Chromatographic and spectroscopic data of the isolated compounds

1. **Compound 1**: Pachypodol (Quercetin 3,7,3'-trimethyl ether): Yellow needles; Rf 0.67 (CHCl3-EtOAc, 8:2); 1H-NMR (CDCl3, 500 MHz): δ 12.63 (1H, s, OH-5), 7.70 (1H, br s, H-2'), 7.67 (1H, br d, J=8.5 Hz, H-6'), 7.04 (1H, d, J=8.5 Hz, H-5'), 6.44 (1H, br s, H-8), 6.36 (1H, br s, H-6), 3.98 (3H, s, OCH3), 3.88 (3H, s, OCH3), 3.86 (3H, s, OCH3); 13C-NMR (DMSO-d6, 125 MHz): δ 178.72 (C-4), 165.45 (C-7), 162.08 (C-5), 155.82 (C-2), 157.76 (C-9), 148.37 (C-4'), 138.84 (C-3'), 122.69 (C-6'), 114.58 (C-5'), 110.91 (C-2'), 124.46 (C-1'), 97.84 (C-6), 92.20 (C-8), 60.16 (OCH3), 56.12 (OCH3), 55.81 (OCH3); UV (MeOH) λmax: 270, 355, +NaOMe: 266, 405.

2. **Compound 2**: Chrysoespermen (Quer cetag etin 3,6,7,3'-tetramethyl ether): Yellow needles; Rf 0.62 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 12.62 (1H, s, OH-5), 7.66 (1H, br s, H-2'), 7.62 (1H, br d, J=8.7 Hz, H-6'), 6.96 (1H, d, J= 8.7 Hz, H-5'), 6.89 (1H, s, H-8), 3.91 (3H, s, OCH3), 3.87 (3H, s, OCH3), 3.80 (3H, s, OCH3), 3.72 (3H, s, OCH3); UV (MeOH) λmax: 256, 269 (sh), 355, +NaOMe: 269, 411, +NaOA: 266, 414.

3. **Compound 3**: Kemukatakenin (Kaempferol 3,7-dimethyl ether): Yellow needles; Rf 0.67 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 7.69 (2H, d, J= 8.1 Hz, H-2',6'); 6.94 (2H, d, J= 8.1 Hz, H-3'), 6.70 (1H, br s, H-8), 6.33 (1H, br s, H-6), 3.84 (3H, s, OCH3), 3.78 (3H, s, OCH3); UV (MeOH) λmax: 266, 355, +NaOMe: 259, 395, +NaOA: 266, 368.
Table 2. Essential oil composition of the aerial parts of *S. lavandulifolia* from north-west of Iran.

<table>
<thead>
<tr>
<th>No</th>
<th>Compounds</th>
<th>KI</th>
<th>%</th>
<th>No</th>
<th>Compounds</th>
<th>KI</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-Thujene</td>
<td>927</td>
<td>0.23</td>
<td>25</td>
<td>β-Bourbonene</td>
<td>1389</td>
<td>0.56</td>
</tr>
<tr>
<td>2</td>
<td>α-Pinene</td>
<td>939</td>
<td>0.70</td>
<td>26</td>
<td>(E)-Caryophyllene</td>
<td>1419</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>Camphene</td>
<td>949</td>
<td>0.10</td>
<td>27</td>
<td>(E)-β-Farnesene</td>
<td>1456</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>Benzaldehyde</td>
<td>955</td>
<td>0.40</td>
<td>28</td>
<td>ar-Curcumene</td>
<td>1482</td>
<td>5.00</td>
</tr>
<tr>
<td>5</td>
<td>Sabinene</td>
<td>972</td>
<td>0.29</td>
<td>29</td>
<td>Germacrene D</td>
<td>1487</td>
<td>1.17</td>
</tr>
<tr>
<td>6</td>
<td>β-Pinene</td>
<td>977</td>
<td>0.29</td>
<td>30</td>
<td>β-Bisabolene</td>
<td>1506</td>
<td>2.82</td>
</tr>
<tr>
<td>7</td>
<td>1-Octene-3-ol</td>
<td>990</td>
<td>0.23</td>
<td>31</td>
<td>δ-Cadinene</td>
<td>1526</td>
<td>1.92</td>
</tr>
<tr>
<td>8</td>
<td>Myrcene</td>
<td>991</td>
<td>1.48</td>
<td>32</td>
<td>Spathulenol</td>
<td>1579</td>
<td>7.21</td>
</tr>
<tr>
<td>9</td>
<td>α-Phellandrene</td>
<td>1005</td>
<td>0.12</td>
<td>33</td>
<td>α-Bisabolol</td>
<td>1688</td>
<td>23.85</td>
</tr>
<tr>
<td>10</td>
<td>δ-3-Carene</td>
<td>1011</td>
<td>0.64</td>
<td>34</td>
<td>Methyl hexadecanoate</td>
<td>1923</td>
<td>1.33</td>
</tr>
<tr>
<td>11</td>
<td>α-Terpine</td>
<td>1017</td>
<td>0.46</td>
<td>35</td>
<td>Hexadecanoic acid</td>
<td>1963</td>
<td>4.34</td>
</tr>
<tr>
<td>12</td>
<td>α-Cymene</td>
<td>1025</td>
<td>1.79</td>
<td>36</td>
<td>Linoleic acid</td>
<td>2135</td>
<td>1.68</td>
</tr>
<tr>
<td>13</td>
<td>β-Phellandrene</td>
<td>1028</td>
<td>1.47</td>
<td>37</td>
<td>Sclareol</td>
<td>2225</td>
<td>1.31</td>
</tr>
<tr>
<td>14</td>
<td>1,8-Cineol</td>
<td>1029</td>
<td>0.82</td>
<td>38</td>
<td>Pentacosane</td>
<td>2500</td>
<td>0.22</td>
</tr>
<tr>
<td>15</td>
<td>(E)-β-Ocimene</td>
<td>1047</td>
<td>0.04</td>
<td>39</td>
<td>Heptacosane</td>
<td>2700</td>
<td>0.77</td>
</tr>
<tr>
<td>16</td>
<td>γ-Terpine</td>
<td>1057</td>
<td>1.52</td>
<td>40</td>
<td>Nonacosane</td>
<td>2900</td>
<td>0.75</td>
</tr>
<tr>
<td>17</td>
<td>(Z)-Sabinene hydrate</td>
<td>1068</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Terpinolene</td>
<td>1089</td>
<td>0.17</td>
<td></td>
<td>Monoterpene hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Linalool</td>
<td>1098</td>
<td>0.60</td>
<td></td>
<td>Oxygenated monoterpenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Borneol</td>
<td>1168</td>
<td>0.31</td>
<td></td>
<td>Sesquiterpene hydrocarbons</td>
<td>14.46</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Terpinen-4-ol</td>
<td>1178</td>
<td>1.73</td>
<td></td>
<td>Oxygenated sesquiterpenes</td>
<td>31.06</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Carvacrol methyl ether</td>
<td>1244</td>
<td>0.81</td>
<td></td>
<td>Diterpenoids</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Thymol</td>
<td>1291</td>
<td>17.88</td>
<td></td>
<td>Non-terpenes</td>
<td>9.72</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>α-Copaene</td>
<td>1376</td>
<td>0.78</td>
<td></td>
<td>Total identified</td>
<td>88.15</td>
<td></td>
</tr>
</tbody>
</table>

* Identified compounds listed in order of elution from HP-5MS column; ** Kovats retention indices to C₄₋C₃₀ n-alkanes on HP-5MS column.

![Figure 1. Structures of the isolated compounds from the aerial parts of *S. lavandulifolia*.](image-url)
Cytotoxic Flavonoids from Stachys lavandulifolia

Compound 4: Volutin (Luteolin 7,3'-dimethyl ether); Yellow needles: Rf 0.62 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 12.98 (1H, s, OH-5), 7.60 (1H, br d, J= 8.1 Hz, H-6), 7.59 (1H, br s, H-2'), 6.95 (1H, d, J= 8.1 Hz, H-5'), 6.97 (1H, s, H-3'), 6.81 (1H, br s, H-8), 6.37 (1H, br s, H-6'), 3.90 (3H, s, OCH3), 3.87 (3H, s, OCH3); UV (MeOH) λmax: 250, 264 (sh), 345, +NaOMe: 259, 404, +NaOAc: 256, 355.24

Compound 5: Penduletin (5,4'-dihydroxy-3,6,7-trimethoxyflavone); Yellow needles: Rf 0.51 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 500 MHz): δ 7.92 (2H, d, J= 8.6 Hz, H-2,6'), 6.91 (2H, d, J= 8.6 Hz, H-3,5'), 3.89 (3H, s, OCH3), 3.76 (3H, s, OCH3), 3.73 (3H, s, OCH3); 13C-NMR (DMSO-d6, 125 MHz): δ 176.65 (C-4), 158.72 (C-4'), 156.87 (C-7), 154.48 (C-9), 150.35 (C-2), 150.24 (C-5), 128.66 (C-6), 128.34 (C-2',6'), 118.83 (C-1'), 113.96 (C-3',5'), 104.16 (C-10), 89.12 (C-8), 58.44 (OCH3), 57.92 (OCH3), 54.59 (OCH3); UV (MeOH) λmax: 271, 338, +NaOMe: 272, 392, +NaOAc: 272, 344 (sh), 396; EIMS (40 eV) m/z: 344 [M]+, 329 [M-Me]+, 181 [A-Me]+, 121 [B2]+.35

Compound 6: Viscosine (5,7,4'-trihydroxy-3,6-dimethoxyflavone); Yellow needles: Rf 0.44 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 500 MHz): δ 7.93 (2H, d, J= 8.2, H-2,6'), 6.94 (2H, d, J= 8.2, H-3,5'), 6.54 (1H, s, H-3), 3.78 (3H, s, OCH3), 3.75 (3H, s, OCH3); 13C-NMR (DMSO-d6, 125 MHz): δ 178.62 (C-4), 160.60 (C-4'), 158.77 (C-2), 156.12 (C-9), 152.84 (C-5), 150.23 (C-7), 137.13 (C-3), 131.60 (C-6), 130.59 (C-2',6'), 121.07 (C-1'), 116.09 (C-3',5'), 105.01 (C-10), 94.43 (C-8), 60.42 (OCH3), 60.13 (OCH3); UV (MeOH) λmax: 268, 338, +NaOMe: 272, 331 (sh), 397, +NaOAc: 275, 350, +AlCl3: 406 (sh), 361, 310 (sh), 272; +HCl-AlCl3: 404 (sh), 362, 306 (sh), 281; EIMS (40 eV) m/z: 330 [M]+, 315 [M-Me]+, 287 [M-MeCO]+, 153 [A]+, 121 [B2]+.35

Compound 7: Chrysoeriol (Luteolin 3'-methyl ether); Yellow solid: Rf 0.40 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 12.96 (1H, s, OH-5), 7.89 (1H, br d, J= 8.0 Hz, H-6), 7.52 (1H, br s, H-2'), 6.90 (1H, s, H-3), 6.89 (1H, d, J= 8.0 Hz, H-5), 6.56 (1H, br s, H-8), 6.18 (1H, br s, H-6'), 3.74 (3H, s, OCH3).40

Compound 8: Hydroxygerkenwakin (Luteolin 7-Methyl ether); Yellow solid: Rf 0.40 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 13.06 (1H, s, OH-5), 7.89 (1H, br d, J= 8.0 Hz, H-6), 7.52 (1H, br s, H-2'), 6.90 (1H, s, OH-5), 6.89 (1H, d, J= 8.0 Hz, H-5), 6.48 (1H, br s, H-6), 3.88 (3H, s, OCH3).37

Compound 9: Apigenin (5,7,4'-trihydroxyflavone); Yellow solid: Rf 0.30 (CHCl3-EtOAc, 8:2); 1H-NMR (DMSO-d6, 300 MHz): δ 12.95 (1H, s, OH-5), 7.91 (2H, d, J= 8.0 Hz, H-2,6'), 6.91 (2H, d, J= 8.0 Hz, H-3,5'), 6.77 (1H, s, H-3), 6.46 (1H, br s, H-8), 6.17 (1H, br s, H-6'); UV (MeOH) λmax: 266, 335, +NaOMe: 273, 325 (sh), +NaOAc: 272, 384.38

Cytotoxic activity

The results of cytotoxic activity of isolated compounds on MDA-MB-23, HT-29 and MRC-5 cell lines by MTT assay have been summarized in Table 3.

Table 3. Cytotoxic activity of the flavonoids from *S. lavandulifolia* on different cell lines.

<table>
<thead>
<tr>
<th>Samples</th>
<th>MDA-MB-23 IC50 (µg ml⁻¹)</th>
<th>MDA-MB-23 SI</th>
<th>HT-29 IC50 (µg ml⁻¹)</th>
<th>HT-29 SI</th>
<th>MRC-5 IC50 (µg ml⁻¹)</th>
<th>MRC-5 SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pachypodol (1)</td>
<td>165.21</td>
<td>1.74</td>
<td>235.76</td>
<td>1.21</td>
<td>287.16</td>
<td></td>
</tr>
<tr>
<td>Chrysoerolenin (2)</td>
<td>88.23</td>
<td>2.70</td>
<td>116.50</td>
<td>2.04</td>
<td>238.04</td>
<td></td>
</tr>
<tr>
<td>Kumatakenin (3)</td>
<td>130.93</td>
<td>2.59</td>
<td>370.15</td>
<td>0.91</td>
<td>335.07</td>
<td></td>
</tr>
<tr>
<td>Volutin (4)</td>
<td>289.64</td>
<td>0.83</td>
<td>205.27</td>
<td>1.17</td>
<td>240.98</td>
<td></td>
</tr>
<tr>
<td>Penduletin (5)</td>
<td>156.14</td>
<td>2.04</td>
<td>163.63</td>
<td>1.95</td>
<td>319.20</td>
<td></td>
</tr>
<tr>
<td>Viscosine (6)</td>
<td>148.15</td>
<td>3.33</td>
<td>150.01</td>
<td>3.29</td>
<td>493.17</td>
<td></td>
</tr>
<tr>
<td>Chrysoeriol (7) & Hydroxygerkenwakin (8)</td>
<td>112.89</td>
<td>0.72</td>
<td>145.20</td>
<td>0.56</td>
<td>80.92</td>
<td></td>
</tr>
<tr>
<td>Apigenin (9)</td>
<td>141.99</td>
<td>0.25</td>
<td>168.70</td>
<td>0.21</td>
<td>35.67</td>
<td></td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>4.61</td>
<td>2.45</td>
<td>2.5</td>
<td>4.52</td>
<td>11.31</td>
<td></td>
</tr>
</tbody>
</table>

Selectivity index
Chen et al. demonstrated cytotoxic activity of α-bisabolol on PC-3, Hela, ECA-109 and HepG2 cell lines. Moreover, they showed α-bisabolol induces apoptosis in HepG2 cells in a dose- and time-dependently manner through both Fas- and mitochondrial-related pathway with involvement of p53 and NFκB either. It has also been reported the exposure of permanent colonic cell line, Caco-2, to thymol and its mixture with carvacrol could be led to the mitochondrial damage, lipid degeneration, chromatin condensation and finally cell death through apoptosis and necrosis. This study reports the isolation and identification of compounds 1-8 from the aerial parts of S. lavandulifolia for the first time. Furthermore, our literature review indicates this is the first report on the isolation of Pachypodol (1), kumatakenin (3), velutin (4), viscosine (6) and hydroxygenkwanin (8) from the genus Stachys. The isolated flavonoids (1-9) exhibited a moderate cytotoxic activity on MDA-MB-23, HT-29 and MRC-5 cell lines, of which chrysosplenetin, was found as the most toxic compounds toward MDA-MB-23 and HT-29 cells, with IC50 values of 88.23 and 116.50 μg ml-1, respectively. Furthermore, most of the examined methoxylated flavonoids inhibited the growth of mentioned cancerous cell lines with higher selectivity in comparison with MRC-5 normal cells (Table 3). Among the tested compounds, chrysosplenetin, kumatakenin and viscosine with selectivity indices of 2.70, 2.59 and 3.33, respectively, showed higher preferential toxicity against MDA-MB-23 cells than tamoxifen (SI: 2.45).

Previous studies demonstrated that methylation of hydroxyl residue increases the cytotoxic potential of flavonoids and their selective activity against tumor cells, either. The results of recent investigation on cytotoxicity of dietary flavonoids on different human cancer types have been reviewed by Sak. In agreement with our findings, Kawai and colleagues found that higher degrees of methylation of the A-ring and also the presence of a 3'-methoxyl residue are associated with enhanced antiproliferative activity of some synthesized polymethoxylated flavonoids against the leukemic HL60 cells.

A mechanistic study on HepG2 and MCF-7 cells treated with two polymethoxylated flavonoid derivatives isolated from the aerial parts of *Euryops arabicus* indicated that antiproliferative activity of tested compounds was attributed to S-phase cell cycle arrest. In another study, Saito et al. demonstrated nobiletin, a citrus polymethoxylated flavonoid, potentiated the cytolytic activity of KHYG-1 cells (a natural killer leukemia cell line) by induction of the expression of granzyme B gene, a serine protease which acts as a cytotoxic effector. Polymethoxylated flavonoids have also received great attention because of their antiangiogenic activity. Potent antiangiogenic activity of xanthomicrol and calycoperin from the aerial parts of *Dracocephalum kotschyi* and its relation with inhibition of VEGF (vascular endothelial growth factor) expression has been shown during previous investigations. Beside cytotoxic activity, viscosine has been previously reported for its anxiolytic and anticonvulsant effects via GABA A receptor modulation. Therefore, this major flavonoid isolated from the chloroform extract of *S. lavandulifolia*, could be considered as an active compound involved in anxiolytic activity of *S. lavandulifolia* extracts documented by Rabbani et al.

Some hormone induced effects followed by administration of the aerial parts of *S. lavandulifolia* may be associated with the presence of penduletin and apigenin, flavonoids with confirmed estrogen receptor-β (ERβ) selective activity.

Conclusion

In conclusion, flavonoids (1-9) identified in the chloroform extract of *S. lavandulifolia* could be assumed as toxic principles of this species. However, future in vivo studies need to confirm this finding. Furthermore, this study suggests some of the isolated methoxylated flavonoids such as chrysosplenetin (2), kumatakenin (3) and viscosine (6) as appropriate candidates for anti-cancer drug development research.

Acknowledgements

This research was supported by Tehran University of Medical Sciences and Health Services grant (No. 15951).

Conflict of interests

The authors claim that there is no conflict of interest.

References

