Propylthiouracil-Induced Mitochondrial Dysfunction in Liver and its Relevance to Drug-Induced Hepatotoxicity

Afram Jamshidzadeh1,2, Hossein Niknahad1,2, Reza Heidari1*, Maryam Azadbakht2, Forouzan Khodaei2, Mohammad Reza Arabnezhad3, Omid Farshad4,5

1Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
2Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
3Students Research Committee, School of Pharmacy, International Branch, Shiraz University of Medical Sciences, Shiraz, Iran.

Article Info

Article History:
Received: 26 January 2017
Accepted: 5 May 2017
ePublished: 30 June 2017

Keywords:
- Antithyroid drugs
- Bioenergetics
- Liver Failure
- Mitochondrial Dysfunction

Abstract

Introduction

Drug-induced hepatotoxicity is a big challenge in pharmacotherapy and drug development.1,2 Antithyroid drugs-induced hepatotoxicity is a clinical complication.3,4 Propylthiouracil (PTU) is prescribed against hyperthyroidism especially in situations such as pregnancy.5 On the other hand, PTU administration is associated with several adverse drug reactions including taste loss, gastrointestinal disturbances, and lupus-like syndrome.5,7 PTU also causes serious adverse effects such as agranulocytosis and liver failure.8,10 Several cases of PTU-induced hepatotoxicity have been reported.4,11-16 Pediatrics seems to be more vulnerable to PTU-induced hepatotoxicity.17 There is no precise mechanism for PTU-induced liver injury.12,18

The etiology of drug-induced liver injury sometimes underlies mitochondrial toxicity.19 Mitochondrial dysfunction could play a pivotal role in cell death and organ failure.19 Previous studies mention the role of mitochondrial dysfunction in thioamide-based drugs toxicity.20,21 PTU is a thionamide antithyroid drug. Previously, we also found that methimazole as another thionamide antithyroid drug caused mitochondrial injury in isolated rat hepatocytes.20,22

In the current study, we aimed to investigate the effect of PTU on hepatic mitochondria in two different experimental models. The data obtain from this study might help to provide therapeutic/preventive options against PTU-induced hepatotoxicity.

Materials and Methods

Chemicals

3-(N-morpholino)propane sulfonic acid (MOPS), Ethylene diamine tetra acetic acid (EDTA), Dimethyl sulfoxide (DMSO), Sodium succinate, 6-Propyl-2-Thio uracil (PTU), 4,2-Hydroxyethyl-1-piperazineethanesulfonic acid (HEPES), D-mannitol, Rhodamine123 (Rh 123), 2,3-[4,5dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), Fatty acid-free bovine serum albumin (BSA) fraction V, Sucrose, Coomassie brilliant blue, and Ethylene glycol-bis (2-
aminothylether)-N,N,N′,N′-tetraacetic acid (EGTA) were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Hydroxyethylaminomethane hydrochloride (Tris-HCl) and Trichloroacetic acid (TCA) were purchased from Merck (Darmstadt, Germany). The luciferase–luciferin-based kit for ATP measurement was from Promega (ENLITEN®). The kits for serum biochemistry were obtained from Pars Azmun® (Tehran, Iran). All other chemicals used for buffer solutions were of analytical grade and obtained from Merck (Darmstadt, Germany).

Animals
Male BALB/c mice (20-25 g, n=84) were obtained from Comparative and Experimental Medicine Research Center, Animal Breeding Department, Shiraz University of Medical Sciences, Shiraz Iran. Mice were housed in cages on chip-wood bedding at a constant temperature of 23±1°C and relative humidity of 40%. Animals had free access to tap water and a typical chow diet. Mice received human care and handled according to an animal handling protocol approved by a local ethics committee at Shiraz University of Medical Sciences, Shiraz, Iran (#11453).

In vivo experiments
Mice (n=42) were treated with PTU (10, 20, 40, 80, and 160 mg/kg, i.p.). The control animals received PTU vehicle (Normal saline, 5 ml/kg, i.p.). Five hours later, mice were sacrificed and their liver mitochondria was isolated based on a previously reported protocol.23,24 Briefly, animals were sacrificed by cervical dislocation and their liver was quickly excised and washed with cold (4°C) sodium chloride solution (0.9% w: v).23,29 The liver tissue (at a 10:1 buffer to liver ratio) was homogenized in a solution containing 225 mM sucrose, 75 mM mannitol, 2 mM MOPS, 0.1% BSA, and 0.5 mM EGTA (pH = 7.4). Tissue homogenate was centrifuged (1000 g, 4°C, 10 minutes) to remove cell debris, intact cells, and cell nuclei. To precipitate mitochondrial fraction, the supernatants were further centrifuged at 10000 g, 4°C, for 10 minutes.23 Using fresh buffer medium, the last step was repeated three times. As mentioned, all manipulations during mitochondrial isolation process were performed on ice (4°C) to minimize mitochondrial injury.23

Serum biochemistry and liver histopathology
Blood samples were collected from vena cava of the anesthetized animals (Thiopental, 50 mg/kg, i.p.). Samples was transferred to standard tubes (Improvacuter®; gel and clot activator-coated tubes; Guangzhou, China) and blood serum was prepared by centrifugation (3000 g, 4°C, 15 min.). The liver tissue was removed and washed in ice-cold sodium chloride solution (0.9% w:v). A Mindray® BS-200 auto-analyzer (Mindray chemistry analyzers for low-volume laboratories, Guangzhou, China) and commercial kits (Pars Azmun®, Tehran, Iran), were used to evaluate serum lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate amino transferase (AST) in PTU-treated mice.25,26 Liver samples were fixed in buffered formalin solution (0.4% sodium phosphate monobasic, NaH₂PO₄, 0.64% sodium phosphate dibasic, Na₂HPO₄, and 10% formaldehyde in distilled water) and used for tissue histopathological assessment.27,28 Paraffin-embedded blocks of liver tissue were prepared and stained with haematoxylin and eosin (H&E) before viewing by a light microscope (Olympus CX21®, Japan).

In vitro experimental design
Increasing concentrations of PTU (10 µM-1 mM) were added to isolated liver mitochondria and several mitochondrial indices were assessed. Control mitochondria received no specific treatment and incubated at the same conditions.

Liver mitochondria isolation
Mice liver mitochondria were isolated by differential centrifugation method based on a previously reported protocol.23 Briefly, animals were sacrificed by cervical dislocation and their liver was quickly excised and washed with cold (4°C) sodium chloride solution (0.9% w: v).23,29 The liver tissue (at a 10:1 buffer to liver ratio) was homogenized in a solution containing 225 mM sucrose, 75 mM mannitol, 2 mM MOPS, 0.1% BSA, and 0.5 mM EGTA (pH = 7.4). Tissue homogenate was centrifuged (1000 g, 4°C, 10 minutes) to remove cell debris, intact cells, and cell nuclei. To precipitate mitochondrial fraction, the supernatants were further centrifuged at 10000 g, 4°C, for 10 minutes.23 Using fresh buffer medium, the last step was repeated three times. As mentioned, all manipulations during mitochondrial isolation process were performed on ice (4°C) to minimize mitochondrial injury.23

Mitochondrial dehydrogenase activity (MTT assay)
A colorimetric method based on the 3-(4, 5-dimethylthiazol-2-yl)-2, the 5-diphenyltetrazolium bromide reduction (MTT assay) was used for assessment of mitochondrial dehydrogenases activity.30,31 Liver in a buffer containing 320 mM sucrose, 1 mM EDTA, and 10 mM Tris-HCl (pH = 7.4), was incubated with 40 µl of the MTT solution (1 mg/ml) at 37°C for 30 minutes in dark. The product of purple formazan crystals was dissolved in 1 ml dimethyl sulfoxide (DMSO). Then, 100 µl of dissolved formazan was added to 96 well plate and the optical density at 570 nm was measured with an EPOCH plate reader (BioTek® Instruments, Highland Park, USA).31,32 Samples protein concentrations were determined by the Bradford method.33

Mitochondrial membrane potential
Rhodamine 123 was used as the cationic fluorescent probe for assessment of mitochondrial membrane potential.25,32 Briefly, fractions (0.5 mg protein/ml) of prepared liver mitochondria were incubated with rhodamine 123 (Final concentration of 10 µM) in a buffer containing 65 mM KCl, 125 mM sucrose, 10 mM HEPES and 5 mM sodium succinate (pH=7.2, 30 min, 37°C). Samples were centrifuged (15,000 g, 10 min, 4 ºC), and the
Propylthiouracil-induced mitochondrial dysfunction

Fluorescence intensity of the supernatant was measured using a FLUOstar Omega® multifunctional fluorescent microplate reader (λ _excitation_ = 485 nm and λ _emission_ = 525 nm). \(^{23,31}\)

Mitochondrial Swelling assay

Monitoring the decrease in light absorbance at 540 nm was used as a method to assess mitochondrial swelling. \(^{23}\) Briefly, mitochondrial samples (0.5 mg protein/ml) were suspended in swelling buffer (125 mM sucrose, 5 mM sodium succinate, 65 mM KCl, and 10 mM HEPES, pH=7.2). To start mitochondrial swelling, calcium (200 μM) was added after 5 minutes of samples incubation. Light absorbance (OD_{540 nm}) was assessed using a FLUOstar Omega® multifunctional fluorescent microplate reader with constant shaking (100 rpm orbital shaking before each read) and temperature (30ºC). \(^{23,34}\) A decrease in light absorbance is directly associated with an increase in mitochondrial volume. \(^{23}\)

Mitochondrial ATP level

A commercial kit based on luciferase–luciferin reaction (Promega, ENLITEN[®] ATP Assay System, Promega Corporation, Madison, USA) was used to monitor mitochondrial ATP level. \(^{32,35}\) Samples and buffer solutions were prepared based on the kit manual and the luminescence intensity was measured using a FLUOstar Omega[®] multifunctional microplate reader (λ=560 nm).

Statistical analysis

Data are presented as the Mean±SD. The one-way analysis of variance (ANOVA) with Tukey’s multiple comparison test as a post hoc was used for data comparison. \(P <0.05\) was considered as statistically significant difference between groups.

Results

PTU-induced hepatotoxicity in mice was revealed by significant elevation in serum biomarkers of liver injury (Figure 1). It was found that serum LDH, ALT, and AST levels were significantly elevated in PTU-treated animals (Figure 1). Moreover, liver histopathological changes were evident as inflammation, tissue necrosis, and sinusoidal dilation in PTU-treated animals (Figure 1). Evaluation of liver mitochondria isolated from PTU-treated animals revealed a decrease in mitochondrial dehydrogenases enzyme activity (MTT assay), and the collapse of mitochondrial membrane potential ($\Delta \Psi$) (Figure 2). In addition, mitochondrial ATP level was decreased in mitochondria isolated from PTU-treated animals (Figure 3). Moreover, mitochondrial swelling was increased in the PTU-treated mice (Figure 4).

Figure 1. Serum biochemistry of PTU-treated mice. PTU: Propylthiouracil.

Data are presented as Means±SD (n=7) as assessed 5 hours after PTU administration. *Indicates significantly different as compared with control (P<0.01).

Histopathological evaluation (H&E staining) of mice liver revealed tissue necrosis, sinusoidal dilation and inflammatory cells aggregation in PTU-treated animals (B) in comparison with vehicle-treated group (A). Magnification 40×; Scale bar 1000 µm.
A significant decrease in mitochondrial succinate dehydrogenase activity (SDA) was also evident when isolated mitochondria were incubated with PTU (In vitro) (Figure 2). Further assessment of PTU-treated liver mitochondria, revealed a marked collapse of mitochondrial membrane potential (Figure 2). It was also found that mitochondrial ATP content was depleted in PTU-treated groups (Figure 3). Moreover, when isolated liver mitochondria were incubated with PTU, an increase in mitochondrial swelling was detected (Figure 4).

Figure 2. Effect of PTU on liver mitochondria. PTU: Propylthiouracil. PTU caused a decrease in succinate dehydrogenase (SDA) activity (MTT test) (A and B) and collapse in mitochondrial membrane potential (C and D). Data are given as Mean±SD (n=7). Data in colored boxes are significantly different as compared with control (P<0.001).

Figure 3. Effect of PTU on mitochondrial ATP level in vitro (A) and in vivo (B). PTU: Propylthiouracil. Data are given as Mean±SD (n=7). *Indicates significantly different as compared with control (P<0.01).
Discussion

Hepatotoxicity is a major clinical complication associated with antithyroid drugs.36,37 There is several human cases of PTU-induced hepatotoxicity.15,38-39 The mechanism(s) of PTU hepatotoxicity is obscure. In this study, we found that PTU caused mitochondrial dysfunction both in vitro and in vivo. PTU administration caused mitochondrial depolarization, decreased succinate dehydrogenases activity and ATP level. Moreover, mitochondrial swelling was increased in PTU-treated groups.

Effects of PTU on liver could manifest as a transient elevation of serum transaminases to acute liver failure and death.11,13 On the other hand, clinicians advised frequent monitoring of liver function in PTU-treated patients.11,13,17,40-44 Hence, finding the mechanism(s) of PTU-induced hepatotoxicity might help to prevent or cure liver injury induced by this drug. Previously, we found that PTU-induced liver injury was associated with oxidative stress and its associated complications in the liver.24 Oxidative stress might play a role as a cause and/or the consequence of mitochondrial injury.45 The mitochondrial injury is involved in the mechanism of hepatotoxicity induced by many xenobiotics.19,46,47 Mitochondrial injury could play a pivotal role in cell death and apoptosis process.48,49 Hence, xenobiotics-induced mitochondrial injury could lead to cell injury and hepatotoxicity.

It has been found that thionamide-based antithyroid agents such as methimazole caused mitochondrial injury which was revealed by severe mitochondrial depolarization (decreased ΔΨ\textsubscript{m}).20,22 Methimazole reactive metabolites might play a role in its adverse effects toward hepatocytes mitochondria.20,22 PTU is also a thionamide-based antithyroid agent with several cases of severe liver injury.44,50-52 Mitochondria seem to be a target for PTU-induced toxicity. Interestingly, megamitochondria (big mitochondria in shape and size) is a pathologic finding in PTU-induced hepatotoxicity.53 Mitochondrial membrane fragmentation and lysis of the mitochondrial matrices has been observed in liver biopsies taken from human cases of PTU-induced hepatotoxicity.53 All these findings might indicate that mitochondrial injury might be involved in the mechanism of PTU-induced liver injury.

Although the exact role of reactive metabolites of PTU in the liver has not been fully investigated, but this drug might convert to hepatotoxic metabolites.12 The association between PTU reactive metabolite(s) and drug-induced hepatotoxicity is not clear. Further investigation on the role of drug metabolism and the effect of PTU reactive metabolite(s) on vital organelles such as mitochondria might shed some light the mechanisms of PTU-induced liver injury. Several other thionamide-based structures are known as hepatotoxic agents.54,55 Thiourea is the parent chemical for many drugs and industrial agents. Some anti-tuberculosis drugs, anti-HIV reverse transcriptase inhibitors, and centrally acting histamine H\textsubscript{3} antagonists, are among thiourea-containing drugs.44,50,51,56,57 Interestingly, the clinical administration of the mentioned drugs is associated with drug-induced liver injury.55,58 Mitochondrial dysfunction might play a relevant role in the mechanism of liver injury induced by these drugs.55,58
In conclusion, our data suggest that hepatocytes-mitochondria could be a possible target for PTU-induced liver injury. Hence, this study might shed some light on the current knowledge about the mechanism of PTU-induced liver injury. Moreover, these data might help to develop new preventive and therapeutic options against drugs-induced liver injury. The effect of PTU on targets such as mitochondrial respiratory chain enzymes or tricarboxylic acid cycle could be the subject of future studies.

Acknowledgments
The Current investigation was financially supported by the office of Vice-Chancellor of Research Affairs of Shiraz University of Medical Sciences (Grant number: 95-01-36-11453). The authors also gratefully acknowledge the instrumental facility providing of Pharmaceutical Sciences Research Center (PSRC) of Shiraz University of Medical Sciences for this study.

Conflict of interests
The authors claim that there is no conflict of interest.

References
Propylthiouracil-Induced Mitochondrial Dysfunction

44. Mecheatie E. Propylthiouracil use is associated with hepatotoxicity in Graves’ disease. Clinical Endocrinology News. 2009;4:22