Antimalarial Drugs-Induced Hepatic Injury in Rats and the Protective Role of Carnosine

Akram Jamshidzadeh1,2, Reza Heidari1†, Farzaneh Abazari1, Maral Ramezani2, Forouzan Khodaei2, Mohammad Mehdi Ommati1, Maryam Ayarzadeh3, Roya Firuzi2, Arastoo Saeedi2, Negar Azarpira3, Asma Najibi2

1Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
2Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran.
3Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran.
4Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Background: Chloroquine and amodiaquine are used in the prophylaxis and treatment of malaria. However, hepatic injury is associated with malaria drug therapy. On the other hand, there is no promising hepatoprotective agent for prophylaxis or treatment of antimalarial drugs-induced liver injury. Carnosine is a naturally occurring peptide with pleiotropic protective properties in different tissues. This investigation aimed to evaluate the effect of carnosine administration in antimalarial drugs-induced hepatic injury in rats.

Methods: Animals were treated with amodiaquine (180 mg/kg, oral) or chloroquine (970 mg/kg, oral). Carnosine (250, 500 and 1000 mg/kg, i.p) was administered as the hepatoprotective agent against antimalarial drugs liver injury.

Results: Liver injury was manifested biochemically by a significant increase in serum level of ALT, LDH, and AST. In addition, hepatic tissue from antimalarial drugs-treated rats showed a significant increase in reactive oxygen species (ROS), lipid peroxidation and protein carbonylation along with a decrease in hepatic glutathione reservoirs and total antioxidant capacity. Moreover, the liver histopathologic evaluation revealed significant congestion, inflammation, and necrosis in amodiaquine and/or chloroquine-treated animals. Carnosine administration significantly alleviated antimalarial drugs-induced pathologic changes in serum biochemistry and liver tissue.

Conclusion: Our data suggest that carnosine possesses protective properties against amodiaquine and/or chloroquine-induced liver injury possibly through mitigation of drug-induced oxidative stress and its consequent events.

Introduction

Drug-induced liver injury (DILI) is a serious adverse drug reaction associated with many pharmaceuticals. Drugs are able to affect liver function which in some cases it leads to liver failure and even patients death.1 Hepatic injury is a serious adverse effect associated with malaria drug therapy.2,3 Chloroquine is an antimalarial agent used in the treatment and prophylaxis of this disease.4 This drug is also used in the management of lupus erythematosus and rheumatoid arthritis.5,6 Chloroquine is also one of the most effective disease-modifying antirheumatic drugs (DMARDs).5 On the other hand, chloroquine administration is associated with liver injury in humans. Several cases of chloroquine-induced liver injury are reported.2,3,7-9 Although the precise mechanism(s) of chloroquine-induced hepatotoxicity is not clear, some investigations indicated the role of reactive metabolites and oxidative stress in chloroquine hepatotoxicity.10-13 Amodiaquine is another antimalarial drug used in the prophylaxis and treatment of malaria especially against chloroquine-resistant isolates of Plasmodium falciparum.4,14 However, the clinical use of this drug is associated with hepatotoxicity.7,15,16 The exact mechanism of amodiaquine-induced hepatotoxicity is not clear yet, but this adverse effect might be attributed to

*Corresponding Author: Reza Heidari, E-mail: rezahheidari@hotmail.com
©2016 The Authors. This is an open access article and applies the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
the bioactivation of the drug to a quinone imine metabolite.17 Oxidative stress has been suggested to be involved in the development of amodiaquine-induced hepatotoxicity due to the ability of redox cycling induction by the quinone imine metabolite of amodiaquine.18,19 Hence, antioxidant molecules seems to have protective properties against antimalarial drugs-induced liver injury.

Carnosine (beta-alanyl-L-histidine) is a naturally occurring dipeptide, distributed in several animal tissues.20 Carnosine is a safe molecule with pleiotropic protective properties in different organs.21,22 The protective properties of carnosine are widely investigated in different diseases as well as in xenobiotics-induced liver injury.21,23,27 Several investigations indicated that carnosine serves as an antioxidant with marked free radical scavenging capacity.28,29 Carnosine is also a good carbonyl trap and protects intracellular proteins and organelles against toxic insults.30,32 The current investigation was designed to examine the potential protective properties of carnosine on the liver of amodiaquine and/or chloroquine-treated rats.

Experimental

Chemicals

Carnosine was obtained from Acros (New Jersey, USA). Trichloroacetic acid (TCA), Thiobarbituric acid (TBA), Ethylenediaminetetraacetic acid (EDTA), orthophosphoric acid (OPA), Ferric chloride hexahydrate, 2-Amino-2-hydroxymethyl-propane-1, 3-diol (Tris), and Sucrose were obtained from Merck (Darmstadt, Germany). Hydroxychloroquine, 2,4,6-tri-(2-pyridil)-s-triazine (TPTZ), Dithiothreitol (DTT), and amodiaquine were purchased from Sigma (St.Louis, USA). Kits for evaluating biomarkers of liver injury were obtained from Pars Azmun® (Tehran, Iran). All salts used for preparing buffer solutions were of reagent grade and obtained from Merck (Darmstadt, Germany).

Animals

Male Sprague-Dawley rats (200-300 g, n=72), were obtained from the animal breeding center of the Comparative and Experimental Medicine of Shiraz University of Medical Sciences (Shiraz, Iran). Animals were housed in cages on wood bedding at a temperature of 23±2 °C. Rats had free access to food and water. The animals received humane care and use and were handled according to the animal handling protocol approved by a local ethics committee at Shiraz University of Medical Sciences.

Study procedures

Animals were randomly divided in 12 groups (n=6). The treatments were as follow: A) Control (vehicle-treated); B) Carnosine (1000 mg/kg, i.p); D)Amodiaquine (180 mg/kg, oral); E) Amodiaquine (180 mg/kg, oral) + Carnosine (250 mg/kg, i.p), F) Amodiaquine (180 mg/kg, oral) + Carnosine (500 mg/kg, i.p), G) Amodiaquine (180 mg/kg, oral) + Carnosine (1000 mg/kg, i.p), H) Chloroquine (970 mg/kg, oral), I) Chloroquine (970 mg/kg, oral) + Carnosine (250 mg/kg, i.p), J) Chloroquine (970 mg/kg, oral) + Carnosine (500 mg/kg, i.p), K) Chloroquine (970 mg/kg, oral) + Carnosine (1000 mg/kg, i.p), L) One week pre-treatment with carnosine (1000 mg/kg, i.p) + Amodiaquine (180 mg/kg, oral), M) One week pre-treatment with carnosine (1000 mg/kg, i.p) + Chloroquine (970 mg/kg, oral), N) Carnosine (1000 mg/kg, i.p). Carnosine was administrated 2 hours after antimalarial drugs. Biomarkers of liver injury were monitored 24 hours after antimalarial drugs administration.

Serum biochemistry

Rats were anesthetized (pentobarbital, 50 mg/kg) and blood samples were collected from abdominal vena cava. Serum was prepared by centrifugation (3000 g, 10 minutes, 4°C). A Mindray BS-200® auto analyzer and standard kits were used to measure alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), bilirubin, and protein in animals serum.

Liver lipid peroxidation

The thiobarbituric acid reactive substances (TBARS) were assessed in liver tissue as an index of lipid peroxidation.33 Briefly, the reaction mixture consisted of thiobarbituric acid (0.375%, w/v), phosphoric acid (1% w/v, pH=2), and 500 µM of tissue homogenate (10% w/v in KCl, 1.15% w/v). The mixture was incubated at 100 °C for 45 minutes. After the incubation period, 2 mL of n-butanol was added and vigorously mixed. Finally, Samples were centrifuged (3000 g for 5 minutes) and the absorbance of developed pink color in the n-butanol phase was measured at 532 nm using an Ultrospec 2000®UV spectrophotometer (Pharmacia Biotech, Uppsala, Sweden).34

Hepatic glutathione (GSH) content

Liver GSH levels were assessed with the Ellman reagent (DTNB).35 Briefly, samples of the liver (200 mg) were homogenized in 8 mL of ice-cooled EDTA solution (20 mM). Then, 5 mL of liver homogenate was mixed with 4 mL of cooled distilled water and 1 mL of trichloroacetic acid (50%, w/v). The mixture was vortexed and then centrifuged (765 g, 15 minutes, 4°C). Afterward, 2 mL of supernatant was added to 4 mL of Tris buffer (pH= 8.9) and 100 µl of DTNB solution
Protein carbonylation in liver tissue

Total protein-bound carbonyl content was measured by a spectrophotometric assay after derivatizing the protein carbonyl adducts with 2,4-dinitrophenyl hydrazine (DNPH). Briefly, 500 mg of liver tissue was homogenized in a Phosphate buffer (pH=7.4) containing 0.1% Triton-X100. An aliquot of the liver homogenate (0.5 mL) was added to an equivalent volume of 0.1% DNPH (w/v in 2.0 N HCl) and incubated for 1 hour at room temperature in the dark. This reaction was terminated and total cellular protein precipitated by the addition of an equivalent volume of TCA (20%, w/v). Cellular protein was rapidly pelleted by centrifugation at 10,000 g, and the supernatant was discarded. Excess unincorporated DNPH was removed three times using an excess volume (0.5 mL) of ethanol: ethyl acetate (1:1 v/v). The resulting solubilized hydrazones were measured at 380 nm by an Ultrospec2000 spectrophotometer (Pharmacia Biotech, Uppsala, Sweden).

Liver histopathology

For tissue histopathological evaluation, samples of liver were fixed in buffered formalin solution (0.4% sodium phosphate monobasic, NaH2PO4, 0.64% sodium phosphate dibasic, Na2HPO4, and 10% formaldehyde in distilled water). Paraffin-embedded sections of liver were prepared and stained with haematoxylin and eosin (H&E) before viewing by an Olympus CX21® light microscope (Tokyo, Japan).

Statistical analysis

Results are shown as Mean±SEM (n=6). Comparisons between multiple groups were made by a one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test. Differences were considered significant when P<0.05.

Results

Antimalarial drugs caused liver injury in rats as judged by changes in animals serum biochemistry (Figures 1 and 2). It was found that amodiaquine and chloroquine caused an elevation in serum ALT, LDH, and AST (Figure 1). There were no significant changes in serum bilirubin and protein after animals received amodiaquine and/or chloroquine (Figure 1). Furthermore, we found no significant changes in serum bilirubin and protein after amodiaquine and/or chloroquine administration to rats (Figure 2). Carnosine (250, 500 and 1000 mg/kg, i.p), significantly mitigated pathological changes of serum biomarkers of liver injury in amodiaquine and/or chloroquine-treated animals (Figure 1). Rats were also pre-treated with carnosine (1000 mg/kg, i.p) for one week. On day 8th, animals were challenged with amodiaquine (180 mg/kg, oral) or chloroquine (970 mg/kg, oral). Serum level of liver injury biomarkers were also significantly lower in carnosine pre-treated animals after antimalarial drug administration (Figure 1). A significant amount of reactive oxygen species (ROS) was detected in the liver of amodiaquine and/or chloroquine-treated rats (Figure 3). Furthermore, the total antioxidant capacity of liver tissue was compromised in drug-treated animals (Figure 3).
Figure 1. Serum biomarkers of liver injury after antimalarial drugs administration and the role of carnosine therapy. AQ: Amodiaquine, CQ: Chloroquine, Carn: Carnosine. Data are given as Mean±SEM for six animals in each group. ** Indicates significantly different as compared with control animals (P<0.001). ns: not significant as compared to AQ-treated animals. a Indicates significantly different as compared with AQ-treated group (P<0.001). b Shows significant difference when compared with CQ-treated group (P<0.001). c Indicates significant difference as compared with CQ-treated animals (P<0.05).

Figure 2. Serum total protein and bilirubin in antimalarial and carnosine-treated groups. AQ: Amodiaquine, CQ: Chloroquine, Carn: Carnosine. Data are given as Mean±SEM for six animals in each group. There were no significant differences between drug-treated and control animals in serum levels of bilirubin and protein.
Antimalarial drugs-induced liver injury

We found that carnosine (250, 500 and 1000 mg/kg) effectively alleviated ROS formation and antioxidant depletion induced by antimalarial drugs (Figure 3). Amodiaquine, as well as chloroquine administration, was accompanied by a significant tissue lipid peroxidation, protein carbonylation, and glutathione reservoir depletion in rat liver (Table 1). It was found that carnosine (250, 500 and 1000 mg/kg, i.p.), prevented hepatic glutathione depletion and reduced the level of lipid peroxidation and protein carbonylation in the liver of antimalarial drugs-treated rats (Table 1).

Liver histopathological evaluation revealed a significant tissue necrosis, in addition to sinusoidal congestion and tissue inflammation in drug-treated groups (Figure 4). Carnosine (250, 500 and 1000 mg/kg, i.p.) significantly alleviated liver histopathological changes induced by chloroquine and/or amodiaquine (Figure 4).

Discussion

Antimalarial drugs administration is accompanied with liver injury.2,3 There is no promising hepatoprotective agent against the liver injury induced by these drugs.

Table 1. Liver tissue glutathione content, lipid peroxidation and protein carbonylation in antimalarial drugs-treated animals.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Liver GSH (µmol/mg wet tissue)</th>
<th>Lipid peroxidation (nmol of TBARS/mg wet tissue)</th>
<th>Protein carbonylation (OD at 370 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>56.57±2.50</td>
<td>1.87±0.18</td>
<td>0.15±0.02</td>
</tr>
<tr>
<td>Carnosine 1000 mg/kg</td>
<td>54.53±2.33</td>
<td>1.68±0.20</td>
<td>0.13±0.01</td>
</tr>
<tr>
<td>AQ 180 mg/kg</td>
<td>12.03±1.57***</td>
<td>7.22±0.53***</td>
<td>0.32±0.05***</td>
</tr>
<tr>
<td>AQ + Carn. 250 mg/kg</td>
<td>10.45±0.81</td>
<td>4.27±0.23 a</td>
<td>0.22±0.02 a</td>
</tr>
<tr>
<td>AQ + Carn. 500 mg/kg</td>
<td>13.65±0.66</td>
<td>2.10±0.25 a</td>
<td>0.18±0.02 a</td>
</tr>
<tr>
<td>AQ + Carn. 1000 mg/kg</td>
<td>24.59±1.06 a</td>
<td>3.14±0.21 a</td>
<td>0.21±0.01 a</td>
</tr>
<tr>
<td>1 week Carn.+ AQ</td>
<td>32.20±4.68 a</td>
<td>2.97±0.20 a</td>
<td>0.17±0.01 a</td>
</tr>
<tr>
<td>CQ 970 mg/kg</td>
<td>18.72±1.45***</td>
<td>7.60±0.60***</td>
<td>0.22±0.08</td>
</tr>
<tr>
<td>CQ + Carn. 250 mg/kg</td>
<td>12.84±3.10</td>
<td>4.88±0.58 b</td>
<td>0.18±0.06</td>
</tr>
<tr>
<td>CQ + Carn. 500 mg/kg</td>
<td>15.92±1.88</td>
<td>3.22±0.29 b</td>
<td>0.22±0.05</td>
</tr>
<tr>
<td>CQ + Carn. 1000 mg/kg</td>
<td>34.93±2.96 b</td>
<td>3.06±0.39 b</td>
<td>0.18±0.03</td>
</tr>
<tr>
<td>1 week Carn.+ CQ</td>
<td>34.79±2.33 b</td>
<td>3.31±0.25 b</td>
<td>0.18±0.02</td>
</tr>
</tbody>
</table>

AQ: Amodiaquine, CQ: Chloroquine, Carn: Carnosine. Data are given as Mean±SEM (n=6). *** Indicates significantly different as compared with control animals (P<0.001). ns: not significant as compared to AQ-treated animals. a Indicates significantly different as compared with AQ-treated group (P<0.001). b Shows significant difference when compared with CQ-treated group (P<0.001). c Indicates significant difference as compared with CQ-treated rats (P<0.05). d Indicates significantly different from CQ-treated animals (P<0.01).
Hence, finding safe hepatoprotective agents against antimalarial hepatotoxicity might have clinical value. The current investigation was designed to evaluate the potential protective properties of carnosine against amodiaquine and chloroquine-induced liver injury. Although there is no precise mechanism of liver injury for amodiaquine and chloroquine, but several investigations indicated the role of oxidative stress and its consequent events in this complication.10-12,44 Oxidative stress is the mechanism of cellular injury induced by many xenobiotics.45 Oxidative stress is also previously reported after amodiaquine,44 and chloroquine administration.10,12 Amodiaquine is converted to a quinone imine metabolite, which is capable of inducing oxidative stress in liver (Figure 5).46 Although no such reactive metabolite(s) is reported for chloroquine, but it has been shown that chloroquine administration is associated with oxidative stress in hepatocytes.10 Chloroquine-induced oxidative stress has been mitigated by inhibiting some cytochrome enzyme isoforms (Figure 6).10 Hence, antioxidative effects of carnosine,22 might play a major role in its protective properties against antimalarial drugs-induced liver injury.

\textbf{Figure 4.} Photomicrographs of liver tissue from antimalarial drugs-treated animals (H&E staining). \textbf{A:} Control (Vehicle-treated animals). \textbf{B:} Amodiaquine-treated group; animals received amodiaquine (180 mg/kg, oral) and sacrificed 24 hours after drug administration. Liver sinusoidal congestion, in addition to inflammation, was detected in this group. \textbf{C:} Chloroquine-treated animals; rats were treated with chloroquine (970 mg/kg, oral) and tissue samples were taken 24 hours after drug administration. Significant tissue necrosis, in addition to sinusoidal congestion, hepatocytes vacuolization and inflammation were detected in this group. \textbf{D, E and F:} AQ (180 mg/kg)-treated rats which received carnosine 250, 500 and 1000 mg/kg, i.p; respectively. \textbf{G, H, and I:} CQ (970 mg/kg)-treated rats which received carnosine 250, 500 and 1000 mg/kg, i.p; respectively. \textbf{J:} One-week pre-treatment with carnosine + AQ (180 mg/kg). \textbf{K:} One week pre-treated with carnosine + CQ (970 mg/kg). Carnosine administration significantly alleviated antimalarial drugs hepatic lesions (D-K).
Increased ROS level affects some potential targets in cells including membrane lipids and cellular proteins. Cellular glutathione (GSH) depletion is also a common event after oxidative stress. Glutathione has an important role in hepatocyte defense against toxicity. Severe glutathione depletion leaves the liver vulnerable to oxidative damage which causes progressive deterioration of macromolecules and finally organ injury. As mentioned, amodiaquine is metabolized through CYP450 in liver and forms a quinone imine reactive metabolite (Figure 5) which can irreversibly bind to proteins and lead to toxicity by disrupting cell functions (Figure 5). Since reactive intermediates are formed during amodiaquine metabolism, amodiaquine toxicity mechanism could involve protein carbonylation (Figure 5). On the other hand, lipid peroxidation is a consequence of oxidative stress. It has been shown that lipid peroxidation occurred after amodiaquine treatment. It has also been found that glutathione reservoirs have a critical role in preventing amodiaquine hepatotoxicity. Carnosine is a good antioxidant and also prevents cellular proteins injury. Although not evaluated in the current investigation, the effect of carnosine on liver mitochondria might also be...
involved in its hepatoprotective mechanisms against amodiaquine-induced liver injury (Figure 5). Chloroquine is metabolized in liver through CYP2C8 and CYP3A4 (Figure 6). It has been found that chloroquine-induced hepatotoxicity is also associated with oxidative stress in liver (Figure 6). In the current study, we found that carnosine effectively alleviated chloroquine-induced oxidative stress, lipid peroxidation, and glutathione reservoirs consumption (Figure 6). We found that treatment with carnosine protects the liver through attenuation of lipid peroxidation and decreased the production of free radical derivatives, as evident from the decreased levels of liver TBARS (lipid peroxidation) (Figure 3) and ROS formation (Figure 4), and enhancement of the total antioxidant capacity of the liver (Figure 4). As also reported in previous investigations, carnosine offered protection against oxidative stress by scavenging of free radicals. It has also been reported that carnosine boosts cellular antioxidant defense mechanisms and replenish glutathione level. Hence, the antioxidant capacity of carnosine along with its ability to protect intracellular targets such as different proteins might be involved in its mechanism of hepatoprotection against antimalarial drugs (Figure 6). The elevation in serum ALP and bilirubin levels indicates the cholestatic nature of hepatic injury induced by xenobiotics. As serum ALP and bilirubin didn’t significantly change in the current investigation, the antimalarial drugs-induced liver injury might be mostly of hepatocellular type rather than cholestatic. Serum total protein is usually decreased in cases of chronic liver injury. As toxicity markers were assessed 24 hours after antimalarial drugs administration, the short time period of the current investigation might be responsible for the insignificant changes in serum protein level (Figure 2).

Conclusion
In conclusion, our data suggest that carnosine possesses protective properties against amodiaquine and/or chloroquine-induced liver injury possibly through mitigation of drug-induced oxidative stress and its consequent events. A risk assessment study has been shown that carnosine is a safe molecule and cause no significant adverse effects even at very high doses. High doses of carnosine have also been applied in different experiments. We might be able to suggest that carnosine could be administered as a supplementary agent with chloroquine and amodiaquine to reduce their adverse effects toward the liver. Chloroquine is also widely administered as a disease-modifying antirheumatic drug (DMARD) in patients with rheumatoid arthritis. Hence, carnosine might be beneficial as an adjuvant therapy with chloroquine to reduce the risk of chloroquine-induced adverse effects in these patients. Clearly, the possible interaction(s) of carnosine with malaria/rheumatoid arthritis drug therapy should be considered and must be evaluated in future investigations. Carnosine might also be considered as a therapeutic option for a range of drugs and other xenobiotics-induced oxidative stress and liver injury.

Acknowledgement
This paper was derived from a Pharm D. Thesis for Mrs Farzaneh Abazari. The current investigation was financially supported by the vice-chancellor for research affairs of Shiraz University of Medical Sciences (Grant number: 93-01-36-7610).

Conflict of interests
The authors claim that there is no conflict of interest.

References
8. Wielgo-Polanin R, Lagarce L, Gautron E, Diquet B, Lainé-Cessac P. Hepatotoxicity

54. Hipkiss AR. Aging, proteotoxicity, mitochondria, glycation, NAD+ and carnosine:

