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Abstract 

Background: Histone deacetylase inhibitors (HDACIs) have attracted researchers’ attention as 

anti-cancer agents. Designing novel HDAC inhibitors is important in drug discovery field of HDAC 

due to their high potency, less off-target effects, and good pharmacokinetic and 

pharmacodynamic profiles. 3D quantitative structure-activity relationship (3D‐QSAR) is a 

computational method used to design novel compounds considering 3D structure of molecules. 

Methods: In the current study, we have performed two successive QSAR analyses including a 

classification based for recognizing selective HDAC1-3 inhibitors from non-selective inhibitors 

and a 3D-QSAR to predict the potency of inhibitors. To this, initially a classification based QSAR 

was developed to filter selective HDAC1-3 inhibitors from other isoform-selective or pan 

inhibitors. Also, a receiver operating characteristics (ROC) analysis was performed for evaluation 

the goodness of classification model performance. Then, three different 3D-QSAR models were 

developed specifically for the filtered selective HDAC1-3 inhibitors to assess their selectivity and 

potency. 

Results: The generated models revealed that some common structural moieties have positive or 

negative effect towards the potency of the studied compounds against all three HDAC 1-3 

isoforms. The results indicated that out of the identified important variables, a variable named 

DRY-TIP showing the optimum distance between ZBG and cap group.  Furthermore, presence of 

two HBD groups in ZBD to form pseudoring with a zinc ion present in the active site of the enzyme 

are essential for exerting inhibitory activity. Using partial least square analysis, a 3D‐QSAR model 

with 5 latent variables was generated with q2 values of internal and external validation equal to 

0.62, 0.84, 0.83 and 0.72, 0.90, 0.82 for HDAC1,2,3, respectively. 



Conclusion: The result of the current study can be used to recognize selective HDAC1-3 inhibitors 

and predict their potencies with the aim of selective HDAC1-3 inhibitor design.   

 

Keyword: Histone deacetylase, selective HDAC1-3 inhibitor, GRIND, 3D-QSAR, Docking, 

Classification.  



1. Introduction 

Acetylation of lysine residue in histone proteins results in the removal of the positive charge of 

the ε-amine group weakening histone-DNA binding and consequently leading to the relaxed form 

of the chromatin. In contrast deacetylation leads to rigidity of the chromatins. The regulatory role 

of acetylation and deacetylation balance is important in diverse biological processes specifically 

in gene transcription.1,2 Histone deacetylases (HDACs) leads to suppression of gene expression 

through deacetylation of lysine residue on histone tails.3,4 Until now, 18 human HDACs have been 

recognized in which their classification was based on their sequence, structure, location, and 

function.5 There are two main categories including Zn2+-dependent isoenzymes comprising class 

I (HDAC1-3 and 8), class II (HDAC4-7, 9, and 10) and class IV (HDAC11), and NAD+-dependent 

isoenzymes which constitute class III (SIRT1-7) of HDAC isoforms.6-8 All HDAC isoenzymes have 

three main sections in terms of zinc binding domain (ZBD), hydrophobic channel, and outer rim 

which are located in the bottom, wall, and surface area of active site.9 Different investigations 

indicated that HDACs are overexpressed in variety of diseases encompassing cancer, Alzheimer, 

neurological diseases, inflammatory diseases, and metabolic disorders.6,10,11 HDAC1 is 

overexpressed in prostate, gastric, colon, and breast carcinomas, while the overexpression of 

HDAC2 is majorly observed in colorectal, cervical and gastric cancers, and HDAC3 is mainly 

expressed in colon tumor.12 Based on results of clinical trials, HDACs inhibitors (HDACIs) displayed 

hopeful therapeutic effects in therapy of cancer and Alzheimer specifically.13-16 Currently, there 

are three major class of HDACIs including pan or nonselective HDACIs (such as vorinostat (SAHA), 

panobinostat (LBH-589), belinostat (PXD-101), valproic acid (VPA)),17,18 selective HDACIs (such as 

class I selective HDACIs (romidepsin and entinostat)) and multitarget HDACIs (including CUDC-



101 and CUDC-907).19 Studies showed that selective HDACIs have more potency, less off-target 

effects, and better pharmacodynamics and pharmacokinetic profiles compared to pan 

inhibitors.20 Hence, development of isoform-selective HDACIs has attracted research interests in 

this field.21 From structural point of view, the molecular structures of HDAC inhibitors can be 

divided into three main sections including cap, linker, and ZBG. To date, for the majority of 

HDAC1-3 selective inhbitors, the ZBG is either benzamide22 or hydrazide,23 while the linker group 

is cyclic. Quantitative structure–activity relationship (QSAR) technique is a drug design and 

discovery method which is extensively conducted to correlate structure features (defined as 

descriptors) and biological activities for a set of molecules.24 QSAR has different applications but 

mostly is being used for designing novel and potent compounds as well as predicting the 

biological activities.25 QSAR analyses can be categorized based on different criteria. For example, 

based on the dimensionality of the descriptors, the type of QSAR models can range from 0D- to 

7D-QSAR.26,27 In 3D-QSAR methods, the main focus is on spatial parameters, three-dimensional 

structures, and stereochemical properties.28,29 3D-descriptors are employed in alignment-

dependent (aligning studied compounds with each other) and alignment independent 3D-QSAR 

approaches, however the latter approach is more useful, which may be due to the complexity of 

the molecular alignment process in the case of structural heterogeneity.30 In one form of 

alignment-independent methods called GRid-Independent Descriptors (GRIND),30,31 molecular 

interaction fields (MIF) are calculated to describe the interaction energy between ligands and 

different types of probes.32 As a result, the high numbers of calculated descriptors were analyzed 

based on their impact on the biological activity to determine favorable and unfavorable 

interactions.33 Due to the problems associated with existing selective HDAC1-3 in market such as 



entinostat, there are need to design and develop novel selective HDAC1-3 inhibitors with 

modified potency and improved pharmacodynamic properties. Here, we developed a 3D-QSAR 

model on selective HDAC1-3 inhibitors to predict their biological activity and design novel 

inhibitors. To this aim, first, a series of HDACIs were collected from the literature, then, a 

classification based QSAR was performed in order to classify selective HDAC1-3 inhibitors. 

Subsequently, a 3D-QSAR model was developed and validated followed by performing a docking 

investigation to study receptor-ligand interaction.  

2. Methods and Materials 

2.1.  Dataset preparation 
 

A set of 121 HDAC 1-3, 6, and 8 inhibitors based on hydroxamic acid, benzamide, and hydrazide 

scaffolds (Table S1) were collected from the literature for 3D-QSAR studies.23,34-42 All reported 

inhibitory activities were the IC50 values for inhibiting recombinant human HDAC enzyme. The 

biological activity values were converted to pIC50 (-log IC50) and used as the dependent variable 

in the 3D-QSAR study. Then, the 3D structures of all selected compounds were generated using 

the Built Optimum option in HyperChem software (version 8.0.10). Subsequently, the generated 

structures were energy minimized using the MM+ force field based on Polack-Ribiere algorithm.43 

Then, the structures were fully optimized based on the semiempirical quantum mechanics AM1 

method, available in HyperChem.44 The output structures were converted to SYBYL Cartesian 

coordinate files (mol2 file format) using OpenBabel software (version 2.3.2).45   

2.2.  Classification of the dataset 
 



To categorize all under study compounds as selective and nonselective HDAC1-3 inhibitors, first 

a classification-based QSAR analysis was performed. To aim this, DTC Lab Software Tools 

(https://teqip.jdvu.ac.in/QSAR_Tools/) proposed by Roy et al46 was used. Initially, descriptors for 

all 121 compounds were calculated in Dragon software (version 5.5). Then, an input file including 

compounds number, class (1 for selective compounds and 0 for other compounds), calculated 

descriptors, and correspond pIC50 (see Table S1) for each compound was prepared to develop 

classification model using in DTC-QSAR_v1.0.7 tool.  

2.3.  Docking-based alignment 

To determine active conformation of the 43 HDAC1-3 selective inhibitors from previous step, 

they were docked onto the active site of HDAC2. Among HDAC1, 2, and 3, just HDAC2 was 

cocrystallized with an HDAC inhibitor (SAHA) and since they have high similarity percent, HDAC2 

was selected for docking study.47 First, structure of HDAC2 enzyme (PDB ID: 4LXZ) was 

downloaded from the Protein Data Bank (http://www.RCSB.org). Then, the enzyme structure 

pretreated by retaining a single chain of the enzyme, energy minimizing its structure, and 

removing residue clashes using DeepView (Version 4.1.0) software.48 The ligand binding pocket 

was defined by selecting residues within the 6 Å of the co-crystalized vorinostat (SAHA). The 

selected residues were Gly32, His33, Pro34, Met35, Glu103, Asp104, His145, His146, Gly154, 

Phe155, Cys156, Asp181, Ile182, His183, His184, Phe210, Gln265, Asp269, Arg275, Leu276, 

Gly305, Gly306, Gly307, and Tyr308. Then, flexible docking of selected compounds into the 

binding site of the enzyme was performed using GOLD (version5.0; CCDC Inc., Cambridge, UK) 

running on a LINUX operating system.49,50 The coordination of the geometric center includes X: 

39.9370, Y: 5.2070, and Z: -36.1460. By applying the default settings in GOLD, the best scoring 

http://www.rcsb.org/


function (ASP) was selected based on the results of reproducing the experimentally known pose 

of SAHA in the binding site of HDAC2. Furthermore, for ensuring similar proper orientation of all 

compounds, two distance constraints were applied, i.e., setting the distances between Zn2+ ion 

to oxygen atom of carbonyl group and nitrogen atom of NH group in ZBG to 1.5 - 3.5 Å.  In order 

to select optimal conformation for 3D-QSAR modelling, we examined the binding modes and 

orientations of the dataset ligands docked into the HDAC2 active pockets. Only those 

conformations with top ranked ASP values and with proper coordination of ZBG relative to Zn2+ 

ion (in bidentate fashion) in the catalytic domain were selected. Final selection of optimal 

bioactive conformations for QSAR modeling was based on the optimal orientation of the ligands 

in the active site and also presence of favorable interactions between ligands and amino acid 

residues at the outer rim of the active pocket identified essential according to previous 

observations.51 

2.4.  Calculation of GRIND and 3D-QSAR models building   

The Pentacle software (Version 1.0.6, Molecular Discovery, Hertfordshire, UK) was used for 

calculating alignment-independent three-dimensional GRID-based molecular descriptors 

(GRIND, which stands for Grid-Independent Descriptors) and developing the 3D-QSAR models. 

First, the obtained active conformations of selected compounds were introduced to Pentacle 

program for producing GRIND-based descriptors. The molecular interaction fields (MIFs) were 

generated using GRIND based fields32 by calculating the interaction energies at grid points called 

nodes between the compounds and different probes followed by removing the nodes with the 

energies below the default cut-off values. The probes used for generating MIFs such as DRY, HBA, 

HBD, and TIP for calculating hydrophobic, H-bond acceptor, H-bond donor, and steric 



interactions, respectively. Then the most favorable GRIND descriptors were selected using 

AMANDA algorithm.52 The obtained variables were then used for generating correlograms in 

which the product of node-node energies is represented against the distances between the 

nodes. Three 3D-QSAR models were developed for selected HDAC1-3 inhibitors based on HDAC1, 

2, and 3 inhibition activities (pIC50). To develop 3D-QSAR models, initially the 43 selective HDAC1-

3 inhibitors were divided randomly to two train (N: 35) and test (N: 8) sets for HDAC 1, 2, and 3, 

using SPSS (v.27.0.1) software. The train set was used for construction of 3D-QSAR models to 

predict activities of test set. The selected variables were used to build 3D-QSAR models using 

partial least square (PLS) methodology.  

2.5.  Statistical analysis of constructed models 

The generated models were checked from the quality point of view by internal cross validation 

methods. Fractional factorial design (FFD) method was employed to extract the most relevant 

variables to the compounds activities. FFD selection was repeated several times on the models 

until no improvement in the statistical parameters (R2, Q2 and SDEP values) was observed. 

Validity of the final models was evaluated using both internal (using leave-one-out (LOO) 

method) and external cross-validation methods. The predictively of the models was also assessed 

by calculating the standard deviation of the error of prediction (SDEP). All statistical analysis was 

performed by pentacle software. 

3. Results and Discussion 

The main object of this study is to develop 3D-QSAR models in order to predict the inhibition 

potency of selective HDAC1-3 inhibitors. To aim this, first 121 HDACIs compounds and their pIC50 

values were collected from the literature, and introduced to Roy’s QSAR tools to select selective 



HDAC 1-3 inhibitors. Based on result of classification, a set of 43 selective HDAC1-3 inhibitors 

with benzamide and hydrazide scaffold (Table 2) were selected. The obtained results would be 

useful for identification of new selective inhibitors of HDAC1-3 isoenzymes in drug design studies. 

In the current study, first an alignment docking study was performed on the classified selective 

HDAC1-3 inhibitors to get the active conformation of the compounds (Figure 1). Then, the 

obtained conformations were introduced to pentacle software along with their pIC50 values to 

calculate MIFs around the active conformation of dataset ligands. Then, the energy of node-node 

in a specific distance of ligands was used for generating GRIND variables. Subsequently, the 3D-

QSAR models were developed using GRIND descriptors as independent variables and the 

experimental HDAC2 inhibition (pIC50) as dependent variables using PLS regression. The 

developed models were evaluated by internal and external validation approaches.  

 

Figure 1. Docking based alignment of 43 selective HDAC 1-3 inhibitors to achieve the active conformation of the 
compounds. 



3.1. Classification of compounds 

The DTC-lab tool was used to classify compounds as selective and nonselective HDAC1-3 

inhibitors. The software divided the dataset compounds into train (85 compounds) and test (36 

compounds) sets. Based on the defined classification for the train set compounds, this tool 

predicted class for all compounds containing test and train sets according to Genetic Algorithm-

Linear Discriminant Analysis (GA-LDA) model. The results are shown in Table S1 as well as 

validation metrics for classification based QSAR are shown in Table1. A confusion matrix which 

indicates the prediction power level of a classification model has four categories including correct 

predictions for both classes (true positives and true negatives) and incorrect predictions (false 

positives and false negatives). According to QSAR/QSPR Modeling Fundamental Concepts by Roy 

et al,53 for a good classification model, all performance criteria should be near to 100 percent 

except for F-measure which should be near to unity. The MCC (Matthews’s correlation 

coefficient) values were classified to three groups including +1 (represents a perfect prediction), 

0 (demonstrates almost a random prediction) and −1 (indicates total disagreement between 

prediction and observation). Based on defined concepts and measures in the note of Table 1, all 

validation parameter of the constructed classification model are in acceptable range. 

Furthermore, the predictive power of the developed classification-based QSAR was assessed via 

receiver operating characteristics (ROC) analysis (Figure2). The receiver operating characteristics 

(ROC) curve was employed to measure the overall performance of a classification model through 

the calculation of the area under the curve (AUC) and plotting the true positive rate (sensitivity) 

against the false positive rate (specificity). The closer the ROC curve is to the top-left corner of 

the graph, the better the model's ability to distinguish between positive and negative classes. In 

this context, the AUC value for train and test sets were 0.86697 and 0.884615, respectively. These 



results showed that this tool could predict the class of studied compounds correctly with high 

percentage of success which could be used to predict the selectivity of query compounds. Total 

of 43 compounds as selective HDAC1-3 inhibitors were entered to the next step (Table S1 and 

Table2).  

  



Table 1. Validation metrics for classification based QSAR. 

 Accuracy Precision Sensitivity Specificity F-Measure MCC 

Train 92.94% 96.15% 83.33% 98.18% 0.89 0.84 

Test 91.66% 85.71% 92.30% 91.30% 0.89 0.82 
Accuracy is defined as the fraction of correct prediction obtained for both the positive and negative observations 
with respect to the a priori defined class. Sensitivity or true positive rate, measures the ability of a model to correctly 
identify true positives. Specificity measures the proportion of negatives that are correctly identified by a model. 
Precision is defined as the fraction of correct prediction for the positive samples with respect to the total number of 
samples predicted as positives. F-measure is defined as 2 / (1/Precision + 1/Sensitivity). The Matthews correlation 
coefficient (MCC) defined as a balanced measure which can be used even if the classes are of very different sizes.  
 

 
Figure 2. The results of Receiver Operating Characteristic (ROC) analysis and the corresponding Area Under the Curve 
(AUC) illustrating the performance of the developed classification based QSAR model.  
 
Table 2. Structures of selective HDAC1-3 inhibitors associated with their experimental and predicted values.  
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79 

 

6.208 5.959 6.456 6.138 5.944 6.53 

80 

 

6.180 5.699 5.824 6.258 5.778 5.975 

81 

 

5.745 4.921 4.301 5.715 5.12 5.478 

82 

 

5.796 5.260 5.799 5.977 5.001 5.751 

83 

 

5.319 4.921 4.301 5.909 4.888 4.192 

84 

 
4.301 4.301 4.301 5.272 4.304 4.429 



85 

 

6.602 6.155 7.366 5.395 5.845 7.153 

86 

 

6.229 5.620 6.921 6.243 5.636 6.93 

87 

 

6.538 6.036 6.959 6.409 5.988 6.799 

88 

 

5.081 4.301 4.301 5.462 4.979 5.524 

89 

 

5.657 4.920 5.142 5.683 5.119 5.425 

90 

 

6.252 5.495 5.523 5.957 5.319 5.148 

91 

 

6.018 5.347 5.070 6.233 5.398 5.182 



92 

 

7.137 5.959 7.523 6.956 5.918 7.613 

93 

 

6.770 6.509 7 6.499 6.464 6.84 

94 

 

6.769 6.481 6.523 6.639 6.434 6.862 

95 

 

6.065 5.854 6 6.287 6.478 6.111 

96 

 

6.337 5.921 5.854 6.378 5.868 5.726 

97 

 

6.292 6.097 5.951 6.479 6.192 5.988 



98 

 

6.284 5.845 5.975 6.407 5.855 5.788 

99 

 

6.678 6.149 6.076 6.104 6.162 6.014 

100 

 

6.886 6.552 6.508 6.929 6.35 6.53 

101 

 

6.509 6.018 6.310 6.685 6.101 6.437 

102 

 

6.091 6.131 6.244 6.181 6.112 5.98 

103 

 

5.523 5.569 5.721 5.352 5.513 5.715 



104 

 

6.347 6.031 5.757 6.388 6.061 5.95 

105 

 

6.854 6.252 6.229 6.855 6.225 6.007 

106 

 

6.538 6.252 6.091 6.458 6.193 6.165 

107 

 

6.398 5.830 6.398 6.499 5.675 6.382 

108 

 

6.585 5.607 4.301 6.355 5.572 4.666 

109 

 

6.155 6.113 4.301 6.274 6.055 4.235 



110 

 

6.119 6.119 4.824 6.225 6.209 5.772 

111 

 

5.481 5.657 6.397 5.464 5.551 6.422 

112 

 

6.569 6.301 6.301 6.373 6.169 6.318 

113 

 

6.481 5.863 6.229 6.458 5.936 6.046 

114 

 

5.366 5.377 5.796 5.268 5.477 6.04 

115 

 

4.699 4.854 4.855 5.012 4.811 5.475 

116 

 

6.959 s6.745 5.356 7.047 6.325 5.211 



117 

 

7.155 6.585 5.215 6.925 6.539 4.95 

118 

 

6.796 6.468 5.174 6.796 6.459 5.576 

119 

 

6.744 6.585 4.920 6.906 6.596 4.719 

120 

 

6.314 6.107 5.769 6.58 6.153 5.921 

122 

 

- - - 6.372 6.612 6.840 

123 

 

- - - 6.103 6.536 6.176 

124 

 

- - - 6.793 5.864 5.958 

125 

 

- - - 6.584 5.888 6.094 



126 

 

- - - 7.016 5.751 6.348 

3.2. GRIND analysis 

Three separate 3D-QSAR models were developed for each of the enzymes including HDAC1, 2, 

and 3. The constructed 3D-QSAR models were applied to analyze the GRIND variables as 

molecular determinants representor of the HDAC1-3 inhibitors. Figures 3 and Table 4 shows the 

distance dependent plot of PLS coefficients for the selected variables analyzed with 5LVs during 

3D-QSAR model development. Based on the comparative study, five pair of GRIND descriptors 

with highest impact on pIC50 value of HDAC1, 2, and 3 enzymes were identified and analyzed. The 

identified variables includes DRY-DRY (6.8-7.2Å), O-TIP (1.6-2 Å), DRY-TIP (8–8.4 Å), DRY-N1 (2.8–

3.2 Å), N1-TIP (6.4–6.8 Å) for HDAC1, DRY-TIP (16.8-17.2 Å), O-N1 (18-18.4 Å), N1-N1 (16-16.4 Å), 

O-N1 (14.8-15.2 Å), N1-TIP (18-18.4 Å) for HDAC2, and DRY-TIP (18.8-19.2 Å), DRY-N1 (1.6-2 Å), 

N1-TIP (4.8-5.2 Å), O-O (8-8.4 Å), O-TIP (6.8-7.2 Å) for HDAC3 with exact equal probe-probe 

distance. As it can be seen, there are some common variables between all or two isoenzymes 

including DRY-TIP and N1-TIP between HDAC1,2 and HDAC3, DRY-N1, O-TIP between HDAC1 and 

HDAC3. In the DRY-TIP variable, which negatively influences HDAC1 inhibitory activity, the DRY 

hydrophobic probe interacts with the cap section of the inhibitor. This probe is connected to TIP-

interacting moieties at the core part of the compounds, with a separation of about 8–8.4 Å. This 

variable reflects how molecular conformation and folding affect biological activity, likely due to 

the positioning of the molecule within the active site of enzyme. The value of this descriptor is 

high in weak inhibitors (e.g., compounds 103) and low in potent ones (117 and 100, Figure 4-A). 



For HDAC2 and HDAC3, this variable describes interactions between a DRY probe in the cap 

region and a TIP probe at the opposite end of the inhibitor, exerting positive and negative impacts 

on inhibitory activity, respectively. This was confirmed as the value of the variable was high for 

compound 94 (Figure 4-B) and low for 114 in HDAC2, while high for 108 (k -C) and 109 in HDAC3. 

Thus, this GRIND variable may represent the optimal distance between the two ends of inhibitors, 

where the distance more or less than 6-8 atoms leads to reduced inhibitory activity. Another 

common variable, TIP-N1, describes an interaction between an HBD group located in the ZBG 

region and a TIP probe with the end of the molecule in the same area for HDAC1 (positive impact) 

and HDAC3 (negative impact). For HDAC2, this interaction occurs within the linker region and has 

a positive influence. High TIP-N1 values were found in compounds 86, 87, 119 (HDAC1) (Figure 4-

D), 93 (HDAC2) (Figure 4-E), and 83, 86 (HDAC3) (Figure 4-F). The differences in distance and the 

effect of DRY-TIP and TIP-N1 descriptors could thus help in designing selective inhibitors. The 

DRY-DRY GRIND variable is unique to HDAC1 (var17, 6.8–7.2 Å), showing a negative effect on 

HDAC1 inhibition. It represents the distance between two hydrophobic probes in the linker and 

cap regions. This variable appeared in all compounds and was particularly high in weak inhibitors 

(103 (Figure 4-G), 101, 112, 102) but nearly zero in potent ones (117, 116, 118). Such hydrophobic 

interactions may prevent the proper orientation of the inhibitor in the active site of the enzyme. 

The O-TIP descriptor highlights the importance of the presence of an HBD group located in 1.6–

2 Å from a TIP-interacting moiety at the ZBG end, positively affecting HDAC1 inhibition. The 

presence of such HBD group in the ZBG section is essential to the formation of a pseudoring with 

zinc ion, for which the value of this variable was high for potent compounds like 117 (Figure 4-H) 

and 104 (Figure4). DRY-N1 pairs of variables explain the interaction of an HBA and a TIP 



interacting probe in the linker region of the molecule, leading to decreased inhibitory activity 

(high in 89 (Figure 4-I), 90, and low in 80, 79). The N1-N1 variable (var162) is unique to HDAC2 

(16–16.4 Å) and negatively affects inhibition. It represents the interaction between two HBA 

interacting probes between the ZBG and cap regions, suggesting that this long distance may 

hinder proper orientation or cause unfavorable polar interactions at the enzyme rim. This 

descriptor was high in 98 (Figure 4-J), 91, 79, 80, 115 compounds, which are almost weak to 

medium inhibitors, and was zero for the rest of the compounds. Two additional HDAC2-specific 

variables, O-N1 (var472, var464), with distances of 18–18.4 Å and 14.8–15.2 Å, show negative 

and positive effects on activity, respectively. Var472 (high in 98 (Figure 4-K), 115) describes an 

HBD in the ZBG interacting with a nitrogen in the cap, while var464 (high in 97 (Figure 4-L), 98, 

104) represents an HBD in the ZBG interacting with a nitrogen in the linker. A distance of 18–18.4 

Å seems to hinder proper positioning, whereas 14.8–15.2 Å promotes favorable interactions with 

the active site of the enzyme. For HDAC3, the O-O variable (var81, 8–8.4 Å) negatively affects 

inhibition, being high in weak inhibitors (119 (Figure 4-M), 97) and representing an interaction 

between two HBDs in the ZBG region. Conversely, the O-TIP variable (6.8–7.2 Å) describes an HBD 

in the ZBG interacting with the end of the molecule, enhancing inhibition, which is high in potent 

compounds like 85 (Figure 4-N). Finally, the DRY-N1 descriptor highlights a hydrophobic–HBA 

interaction within the core or linker region (1.6–2 Å), which negatively impacts inhibitory activity 

which is high in less potent compounds like 88 (Figure 4-O). The results of classification-based 

3D-QSAR study showed that just scaffolds containing benzamide or hydrazide serve as selective 

HDAC1-3 inhibitors, whereas hydroxamic acid derivatives do not show selectivity. The findings of 

GRIND based 3D-QSAR study alluded to the fact that the two crucial structural parameters for 



HDAC inhibitory activity are presence of HBD groups in ZBD and the optimum distance between 

cap and ZBG. Consequently, the majority of the potent compounds were common among all 

three isoenzymes (HDAC1-3) such as 101, 87, and 93 which have pIC50 ≈6.5. However, only one 

compound (108) among our studied compounds was high selective inhibitor against HDAC1 

isoenzyme with pIC50 value of 6 while has weak inhibitory activity against HDAC2 and HDAC3 with 

pIC50 value of 5.6 and 4.3, respectively. Based on the results of our study, there is a marginally 

selectivity between inhibition of isoenzymes which this issue was confirmed by near 

experimental IC50 values of inhibitors against HDAC1, 2, and, 3 also by high similarity between 

active site forms of these enzymes. Also, based on the obtained results of the developed 3D-

QSAR models alongside the employment of the bioisosterism, 24 new molecules were designed. 

The designed molecules were docked on the active site of the HDAC2 enzyme to obtain an active 

conformation of the ligands. The inhibitory activity of designed compounds (pIC50) was predicted 

using the developed models. Among them, five molecules showed high potency, whose 

structures (122-126) are shown in Table 2 also the poseview presentation of the interaction of 

the potent ligands with HDAC2 are presented as Figure S1 in supplementary material 

file.  According to the structure of compounds, using indazole and carbamate group in the cap 

section, octahydropyrrolo[3,4-c]pyrrole and 2,6-diazaspiro[3.3]heptane in the linker lead to an 

increase in HDAC1-3 inhibition potency, while hydrazide or benzamide are as ZBG. Furthermore, 

compounds 122-126 could establish essential interactions with HDAC2 isoenzyme similar to 

those observed for entinostat experimentally. However, to achieve definitive results, there is a 

need to synthesis and evaluate the biological evaluation of the designed compounds. 
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Figure 3. 5LV PLS coefficient plots for the obtained models. The most intensive variables are labeled by sequential 
numbers. 5LV indicates 5 latent variables; PLS, partial least squares; A: HDAC1, B. HDAC2. C. HDAC3. 

 
 

As well as, a brief structure – activity relationship was performed on 43 selected selective HDAC1-

3 inhibitors. From all collected structures (121 compounds) those which have benzamide or 

hydrazide as ZBG were filtered as selective HDAC1-3 inhibitors with diverse cap and linker groups. 

In compounds with core structure of pyrazine (linker) to 2-aminobenzamide (linker)39, presence 

of 3-indolyl in the cap group (compounds 92, 93, and 94) leads to increases inhibitory activity 

against HDAC1, -2, and -3. Also, the results showed that substitution of methyl linking cap group 

and pyrazine to ethyl (compound 101) decreases inhibition potency. Furthermore, replacement 

of pyrazine linker (compound 105) with pyrimidine (compound 104) significantly reduces the 

inhibitory activity. As well as it is worth to note that compounds which has 2-thienyl group in the 

position-5 of 2-aminobenzamide leads to selectivity of inhibitor to HDAC1, -2 (compounds 108, 

117). About compounds containing alkyl hydrazide in ZBG23, findings showed that the optimum 

size of alkyl group in alkyl hydrazide moiety (in ZBG) was three carbons to occupy the foot-pocket 
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in which enhances inhibition activity and selectivity against HDAC3 specifically those have 3-

indolyl (compound 92) or benzyl (compound 85) in their cap group. Also in compounds which 

acetamidomethyl was attached to their terminal group in cap group leads to decrease inhibition 

activity to HDAC3. 

  



Table 4. The most important structural variables in the 3D-QSAR models for HDAC1, 2, and 3-selective inhibitors. 

Isoenzyme variable Distance(A) Probe block value Interaction between structural elements Comment 

H
D

A
C

1
 

492 1.6 - 2 O-TIP 0.463 NH in ZBG and ZBG ends of inhibitor  
For 37 compounds, higher positive 
impact on active compounds 

17 6.8 - 7.2 DRY-DRY -0.469 Aromatic groups in cap and linker  
For all compounds, higher negative 
impact on less active compounds 

386 8 – 8.4 DRY-TIP -0.536 Hydrophobic groups in cap and linker 
For all compounds, higher negative 
impact on less active compounds 

312 2.8 – 3.2 DRY-N1 -0.545 Nitrogen and aromatic group in linker 
For all compounds, higher negative 
impact on less active compounds 

565 6.4 – 6.8 N1-TIP 0.519 HBD in ZBG and end of inhibitor 
For all compounds, higher positive 
impact on active compounds 

H
D

A
C

2
 

472 18 - 18.4 O-N1 -0.185 HBA in cap and HBD in ZBG 
For 2 compounds (96,115), higher 
negative impact on less active 
compounds 

464 14.8 - 15.2 O-N1 0.207 HBD in ZBG and HBA in piperazine(linker) 
For 35 compounds, higher positive 
impact on active compounds 

408 16.8 - 17.2 DRY-TIP 0.198 Two ends of inhibitor 
For all compounds, higher positive 
impact on active compounds 

162 16 - 16.4 N1-N1 -0.182 Two HBD in ZBG and cap 
For 5 compounds, higher negative 
impact on less active compounds 

594 18 - 18.4 N1-TIP 0.239 
Nitrogen of piperazine (linker) and end of 
inhibitor(ZBG) 

For 37 compounds, higher positive 
impact on active compounds 

H
D

A
C

3
 

413 18.8-19.2 DRY-TIP -0.451 Two ends of molecule 

For all except 5 
compounds(85,111,114,116,84), 
higher negative impact on less active 
compounds 

505 6.8-7.2 O-TIP 0.443 HBD in ZBG and end of ZBG  
For all compounds, higher positive 
impact on active compounds 

309 1.6-2 DRY-N1 -0.643 Nitrogen and aromatic group in linker 
For 36 compounds, higher negative 
impact on less active compounds 

81 8-8.4 O-O -0.477 Two HBD in ZBG 
For 38 compounds, higher negative 
impact on less active compounds 

561 4.8-5.2 N1-TIP -0.386 Nitrogen in cap and end of cap 
For all except 1 compound(102), 
higher negative impact on less active 
compounds 
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Figure 4. The most important structural elements associated with variables: A. DRY-TIP (compound 103) for HDAC1; 

B. DRY-TIP (compound 94) for HDAC2; C. DRY-TIP (compound 109) for HDAC3; D. N1-TIP (compound 86) for HDAC1; 

E. N1-TIP (compound 93) for HDAC2; F. N1-TIP (compound 83) for HDAC3; G. DRY-DRY (compound 103) for HDAC1; 

H. O-TIP (compound 117) for HDAC1; I. DRY-N1 (compound 90) for HDAC1; J. N1-N1 (compound 98) for HDAC2; K. 

O-N1 (var472_compound 98) for HDAC2; L. O-N1 (var464_compound 97) for HDAC2; M. O-O (compound 119) for 

HDAC3; N. O-TIP (compound 109) for HDAC3; O. DRY-N1 (compound 109) for HDAC3;  

O 



3.3.  Predictivity power of the GRIND‐based model 

For building 3D-QSAR models, initially, the compounds were divided into train and test sets using 

SPSS program. To this, the random sample selection prompt was used to select test set (about 

20%) in an effort to have similar range of biological activities (pIC50) for both sets. The train 

compounds were subjected to Pentacle program and the generated GRIND-based descriptors 

were used to build QSAR models. Fractional factorial design (FFD) variable selection was 

performed for several times on the generated models until no significant changes in statistical 

indices (r2, q2, and SDEP) were observed. The internal predictivity of the models was evaluated 

by LOO (leave-one-out) method and the obtained statistics are shown in Table 3. The best model 

was selected based on R2
acc and Q2

acc values with 5 LV and good predictive power of constructed 

model (Q2 external > 0.5)54. The external Q2 was obtained from plotting experimental HDAC1,2,3 

inhibition activity values (pIC50) versus predicted values for test set in an excel program. As well 

as, three scatter diagrams were created to evaluation of correlation of experimental values 

versus predicted values of compounds. Based on the scatter plots which are shown in Figure 5, 

the close distribution of the two data sets showed that the 3D-QSAR models had reliability and 

acceptable prediction ability.  

Table 3. Statistical results of developed 3D-QSAR model.   

Criteria Isoenzyme R2
acc Q2

acc SDEP R2
obs. vs pred. 

Internal validation 
parameters 

HDAC1 
HDAC2 
HDAC3 

0.90 
0.98 
0.97 

0.62 
0.84 
0.83 

0.30 
0.21 
0.36 

0.79 

0.76 

0.78 

Criteria Isoenzyme Q2    

External validation 
parameters 

HDAC1 0.72    

HDAC2 0.90    

HDAC3 0.82    

  



 

 

 

 

 

 

 



 

Figure 5. Experimental vs predicted pIC50 for compounds. Blue squares indicate training set and orange squares show 

the test set compounds 

4.   Conclusions 

In summary, in this study a classification based QSAR was executed on a series of HDAC inhibitors 

to identify selective HDAC1-3 inhibitors. In the next step, three separate alignment‐independent 

3D‐QSAR studies were executed on 43 selected compounds containing benzamide or hydrazide 

scaffolds for the inhibitory activity of HDAC isoforms 1-3. According to obtained results, the 

constructed models could predict the inhibitory activity of compounds with reliable statistics. 

The key structural areas effect on the biological activity of the selective inhibitors are (i) the 

presence of two HBD groups in ZBD to chelate to zinc ion of the enzyme, and (ii) the optimum 

distance of 8 atom carbons between ZBG and cap groups. The results of classification confirmed 

the obtained finding, i.e., compounds with benzamide or hydrazide groups as ZBD were identified 

as selective HDAC1-3 inhibitors, and all selected compounds have optimum distance between 

ZBG and cap groups. Moreover, there are marginal selectivity between HDAC1, 2, and 3 which 



showed there similarity. The result of this work can be used for designing novel series of selective 

HDAC1-3 inhibitors with desired activity. 
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