
1 
 

Research Article 

Identification of key pathways and hub genes in breast cancer via a systems 

biology approach 

Seyedeh Fatemeh Angoshtan, Zeinab Mori, Saeideh Naeimi, Elnaz Mehdizadeh Aghdam 

DOI: 10.34172/PS.025.42698 

To appear in: Pharmaceutical Science (https://ps.tbzmed.ac.ir/) 

Received date: 23 May 2025  

Revised date: 16 Sep 2025 

Accepted date: 17 Sep 2025 

 

Please cite this article as: Angoshtan SF, Mori Z, Naeimi S, Mehdizadeh Aghdam E. Identification 

of key pathways and hub genes in breast cancer via a systems biology approach. Pharm Sci. 2026. 

Doi: 10.34172/PS.025. 42698 

 

This is a PDF file of a manuscript that have been accepted for publication. It is assigned to an issue 

after technical editing, formatting for publication and author proofing. 

  

https://ps.tbzmed.ac.ir/


2 
 

Identification of key pathways and hub genes in breast cancer via a systems 

biology approach 

Seyedeh Fatemeh Angoshtan1, Zeinab Mori2,3, Saeideh Naeimi1*, Elnaz Mehdizadeh Aghdam2,3* 

1 Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran 

2 Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical 

Sciences, Tabriz, Iran 

3 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of 

Medical Sciences, Tabriz, Iran 

 

*Corresponding author(s). Saeideh Naeimi (Email: naeimis@semnan.ac.ir) and Elnaz Mehdizadeh 

Aghdam (Email: emehdizadehaghdam@gmail.com) 

†These authors contributed equally to this work. 

  



3 
 

Abstract 

Background: Breast cancer (BC) remains the leading cause of cancer-related mortality among 

women globally. Despite significant advances in diagnosis and treatment, the molecular 

mechanisms driving breast tumorigenesis are not yet fully elucidated. This study aimed to 

identify key genes and signaling pathways associated with BC pathogenesis and prognosis 

through comprehensive bioinformatic analysis. 

Method: In this study, gene expression data from the GSE124646 dataset were retrieved from 

the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were 

identified based on the criteria of |log₂ fold change| > 1.5 and p-value < 0.01. Functional 

enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis, were conducted. In addition, protein–protein interaction 

(PPI) network was constructed using STRING database and visualized using Cytoscape. Hub genes 

were identified based on network topology (degree ≥ 7; betweenness centrality between 0.005 

and 1). Further validation was performed using the GEPIA web tool and Kaplan–Meier survival 

analysis. 

Results: A total of 923 DEGs were identified, comprising 645 upregulated and 278 downregulated 

genes. Enrichment analysis revealed that these genes were predominantly involved in 

extracellular matrix (ECM) organization and localized within collagen-containing ECM 

components. Molecular function analysis indicated significant enrichment in glycosaminoglycan 

binding. KEGG pathway analysis highlighted the PI3K-Akt signaling pathway as a major pathway 

implicated in BC. 73 hub genes were identified and incorporated into the PPI network. Survival 

analysis demonstrated that elevated expression of several hub genes was significantly associated 

with poor prognosis. GEPIA analysis confirmed aberrant expression of these genes in BC tissues 

compared to normal controls. 

Conclusion: These findings enhance our understanding of the molecular underpinnings of breast 

cancer and highlight potential diagnostic biomarkers and therapeutic targets. Furthermore, this 

study identifies a subset of previously under-characterized genes, which may contribute to 

refining the molecular taxonomy and treatment strategies of BC. 

Keywords: Breast Neoplasm; Gene Expression; Bioinformatics; Survival Analysis; Biomarkers 

 

 

1. Introduction 
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In the United States, breast cancer remains one of the most deadly cancers affecting women, 

second only to other major cancer types. However, breast cancer mortality has declined in recent 

years.1 It is also the most common cancer in women.2 According to the available global data from 

2022, almost 20 million people were diagnosed with cancer (9.7 million people died of cancer 

globally), which includes 36 cancer types in 185 countries. Breast cancer was the most diagnosed 

cancer in women globally, with about 2.3 million new cases and 665,684 deaths worldwide. 3 

BC can be classified into three major subtypes based on the presence or absence of molecular 

markers. Subtypes of breast cancer affect the optimal therapy for each patient in addition to the 

anatomic cancer stage and patient preferences.4 BC is a multifactorial disease.5 Sex, age, and 

blood group are known risk factors for breast cancer.6-9 Reproductive factors such as the age of 

menarche, the age of menopause, pregnancy, and the ovulatory menstrual cycle significantly 

affect the development of breast cancer.7,9 Genetic factors are correlated with breast cancer.10 

Obesity, alcohol consumption, and smoking are associated with an increased risk of breast 

cancer.11-14 

Early diagnosis and treatment of BC can lead to more successful treatments and a decrease in 

the mortality rate of patients with this disease.15  BC can be diagnosed through mammography, 

ultrasound, magnetic resonance imaging (MRI), and high-end molecular bioimaging. 

Unfortunately, these techniques detect BC at a later stage.16,17 

It is necessary to detect breast cancer at early stages to improve patient outcomes. Therefore, 

with the use of microarray technology to detect breast cancer, advancements may be achieved.18  

Recent studies have shown that gene expression analysis may improve breast cancer prognosis 
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and treatment.18-21  DNA and protein analysis can be performed with microarrays, which are 

powerful tools in biomedical research and are based on probe molecules attached to a planar 

surface in a miniaturized grid pattern.22  

For over two decades, the research community has analyzed gene expression in human cancers, 

resulting in a vast amount of data. The development of DNA microarray technology in the late 

1990s revolutionized how gene expression was analyzed.23,24 The development of additional 

gene expression profiling technologies, such as RNA sequencing (RNA-seq), has shed light on the 

specific genes that are differentially expressed, enabling a deeper understanding of novel 

transcripts and providing a far more precise measurement of the levels of transcripts and their 

isoforms.25,26  

Systems biology is about increasing the awareness and understanding of biology and related 

fields by joining the rules of engineering, physics, and math to the complexity of living systems 

through a continuous process to illustrate the interrelated processes occurring within a cell. This 

integration elucidates how environmental inputs and network alterations resulting from genomic 

abnormalities in patient tumors influence cellular behavior and ultimately affect patient 

outcomes.27 Systems biology represents an approach that emphasizes a global perspective by 

analyzing the entire network of interactions rather than focusing on individual proteins, genes, 

or enzymes. This field has demonstrated that cellular proteins do not function in isolation; 

instead, these genes and proteins are interconnected, forming a complex molecular network that 

collaborates to fulfill specific functions.28  
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The objective of our study was to discover novel biomarkers or hub genes from DEGs via an 

integrated analysis of microarray data. We employed a bioinformatics approach to identify the 

hub genes and differentially expressed genes between breast tumors and normal tissues. The PPI 

network was created using the STRING database with the Cytoscape software for visualization.  

Moreover, KEGG analysis and gene ontology (GO) utilising the Enricher web tool were performed 

on the DEGs to gain relevant insights. Additionally, survival analysis and heatmaps were 

generated. Through the analysis of gene expression levels and biological pathways, we studied 

the genetic sources of faulty pathways in cancerous cells to identify potential targets for cancer 

treatment. A novel discovery of our findings was a group of underrepresented genes that are not 

widely studied in the breast cancer literature, adding another layer of awareness and suggesting 

new molecular candidates beyond the standard biomarkers. 

2. Materials and methods 

2. 1   Data collection 

The gene expression data of 10 BC samples and 10 normal samples (GSE124646) from the GPL96 

platform (Affymetrix Human Genome U133A Array) were obtained from the Gene Expression 

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Figure 1 shows a summary of the 

steps accomplished. 

2. 2   Data preprocessing and identification of differentially expressed genes (DEGs) 

The raw gene expression data were first processed using the MAS5 method, implemented 

through the Affy package in R. Boxplots and histograms were generated to visualize the identified 

DEGs. We then analyzed DEGs between BC and normal samples via significance analysis via the 

https://www.ncbi.nlm.nih.gov/geo/
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microarray method with the limma package. The filtering conditions were as follows: |log2-fold 

change| >1.5 and P <0.01. A heatmap was plotted for the samples and DEGs via the heatmap 

package in R software. 

2. 3   Construction of the protein-protein interaction network 

For protein-level interactions, we used the STRING database (http://string-db.org/), which allows 

you to map protein-protein interactions. In the STRING analysis, we only used interaction scores≥ 

0.9, which are considered reliable confidence scores and used to build a network. 29 To visualize 

the PPI network and identify core genes, Cytoscape software (version 3.6.0) was utilized. With 

the threshold of a degree≥7, 0.005≤betweenness≤1 hub genes were found. The thresholds were 

chosen based on studies in the field of network biology, as well as studies that showed that highly 

connected and central nodes are biologically important nodes in protein-protein interaction (PPI) 

networks. Degree of network indicates how many interactions a node has directly, and the 

degree threshold was used to show several biologically relevant hub genes by utilizing strong 

connectivity.30,31 Betweenness centrality indicates how far a node lies on the shortest path 

between other nodes. Betweenness centrality indicates whether a node is bridging bottlenecks 

in the network.32-34 To confirm the choice of hub genes, functional enrichment, survival analysis, 

and expression profiling were performed. All of these indicate the resulting genes are relevant 

from a biological perspective and as prognostic factors.35 

The candidate modules were detected via Gephi. Gephi is software for graph visualization, 

network analysis, and module development.36 By running the Fruchterman-Reingold Algorithm, 

we create a force-directed layout algorithm.37 Several aspects of the hub gene network, including 
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the eigenvector, network diameter, closeness, and betweenness, were examined in Gephi. 

Additionally, Gephi identified the hub gene clusters and candidate modules. 

2. 4   Enrichment analysis 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of the DEGs 

and hub genes were performed via Enrichr (https://maayanlab.cloud/Enrichr/). Enrichr contains 

a wide range of gene sets and biological knowledge for further biological discoveries. Annotations 

of the cellular components, biological processes, and molecular functions of the DEGs were 

determined via Gene Ontology (GO) enrichment analysis. The R cluster profile package was used 

to explore the results of the GO enrichment analysis. Additionally, GO enrichment plots were 

drawn via a bioinformatics tool (http://www.bioinformatics.com.cn/). Gene Ontology introduced 

the concept of systematically linking a collection of genes to a functional biological term.38 KEGG 

is also used to understand high-level and genomic functions. It consists of genomic, chemical, 

and network information.39 

2. 5   Survival analysis of the hub genes 

The Kaplan–Meier plotter database (http://kmplot.com/analysis/) was used to perform the 

survival analysis. The Kaplan–Meier plotter is a website tool that can be utilized to assess the 

impact of numerous genes on survival based on the EGA, TCGA, and GEO databases. In order to 

evaluate how the identified hub genes could impact patient outcomes, we applied Kaplan–Meier 

analysis, a statistical method often used to evaluate survival probabilities over time (P < 0.05 was 

considered to indicate statistical significance). 

2. 6   Expression analysis of the hub genes 

https://maayanlab.cloud/Enrichr/
http://www.bioinformatics.com.cn/
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Additionally, the GEPIA tool was used to validate the role of key genes in BC progression as well 

as their expression levels in normal breast and BC samples to predict the prognostic value of the 

hub genes. GEPIA is an online tool that can be employed for survival, correlation, gene 

expression, and dimensionality reduction analyses in various cancers and normal tissues and 

contains 9,736 tumors (1085 breast cancer samples) and 8,587 normal samples from the TCGA 

and GTEx projects. 40 
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3. Results 

3. 1   Identification of differentially expressed genes (DEGs) 

GSE124646 was selected. The data of 10 breast cancer samples and 10 normal breast samples, 

100% cancer tissue, and 100% normal tissue were normalized with the MAS5 algorithm in the 

Affy package in R statistical software. A total of 22283 genes were identified.  After filtering with 

criteria of  |log2FC| greater than 1.5 and p-value < 0.01, 923 differentially expressed genes were 

identified. Of these, 645 genes had increased expression levels and 278 genes were 

downregulated.(Figure 2) (Table 1). 

3. 2   PPI (Protein-Protein Interaction) Network and Module Analysis 

The PPI network of DEGs was constructed with 307 nodes and 882 edges based on the STRING 

database, with an interaction score of 0.9 as the threshold. The network was analyzed via 

Cytoscape. Degree≥7 and 0.005≤betweenness≤1 were set as the cutoff criteria. A total of 73  

genes were selected as hub genes. Among these hub genes, ALB, ALDH1A1, EGFR, BRCA1, EZH2, 

FN1, JUN, CXCL8, MMP9, FOS, CDK1, EGR1, STAT1, PTPRC, and IGF1 had relatively high 

betweenness centralities, and ALB, EGFR, FN1, JUN, MMP9, CXCL8, IGF1, STAT1, PTPRC, FOS, 

FGF2, CXCL12, PDGFRA, EZH2, and BRCA1 were among the top 15 genes with high degrees of 

connectivity. By using Gephi, the hub genes were divided into 4 significant modules, as presented 

in Figure 3. 

3. 3   Enrichment analysis 

Once again, our hub gene network was constructed in string, and by using Gephi, modules were 

constructed. Four out of five modules were significant, as shown in Figure 3 and Table 2. To better 



11 
 

understand the biological functions of the DEGs and hub genes, GO and KEGG enrichment 

analyses were conducted. Highly expressed pathways and genes of each cluster were also 

identified and displayed. In the biological process analysis, the DEGs were involved mainly in in 

extracellular matrix and structural organizations, and positive regulation of protein kinase B 

signaling. In the cellular component analysis, the DEGs were enriched mainly in the collagen-

containing extracellular matrix, basement membrane, and endoplasmic reticulum lumen. 

According to the results of the molecular function analysis, the DEGs were enriched mainly in 

glycosaminoglycan binding, extracellular matrix structural constituent, and heparin binding 

(Figure 4). The biological process analysis indicated that these hub genes are likely to be vital 

components of specific functions such as the positive regulation of intracellular signal 

transduction. In the cellular component analysis, the hub genes were enriched mainly in spindle 

regulation. In the molecular function analysis, the hub genes were enriched mainly in integrin 

binding. The statistical significance of the GO term enrichment analysis is shown in 

Supplementary 1 and Figure 5. KEGG analysis revealed that the DEGs were enriched in the PI3K‒

Akt signaling pathway, focal adhesion, pathways in cancer, ECM‒receptor interaction, and 

complement and coagulation cascades. The hub genes were enriched in pathways related to 

cancer, the PI3K-Akt signaling pathway, focal adhesion, proteoglycans in cancer, and pathways 

related to cancer. In the KEGG enrichment figure, the -log₁₀(p-value) scale represents statistical 

significance for each pathway, with higher numbers indicating greater enrichment (Figure 6, 

Supplementary 2) 

3. 4   Hub gene validation: Survival analysis and gene expression profiling of the hub 

genes 
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Kaplan‒Meier curves were plotted for the hub genes. The KM plot showed that the expression 

of most of the hub genes significantly differed between the high- and low-expression groups 

(Supplementary 3). These results indicate that 78.08% of the hub genes have prognostic 

significance for breast cancer patients.  Hazard ratios (HR) and log-rank p-values for all hub genes 

assessed, which reflect the results of our survival analysis, are presented in Supplementary 4. 

GEPIA was used to analyze the hub genes and compare their overall expression levels with those 

of normal tissues. The results indicated that the hub genes were abnormally expressed in breast 

cancer tissue compared with normal breast tissue (Figure 7). 

4. Discussion 

Breast cancer is a biologically diverse disease, characterized by considerable heterogeneity in 

both its molecular characteristics and clinical behavior, driven by DNA alterations resulting in the 

activation of oncogenes or the suppression of tumor suppressor genes. The development of array 

technology allows surveys of gene expression, and with the aim of bioinformatics tools, a better 

understanding of expression profiles has led to new approaches. Using these technologies 

enables researchers to define the functions of newly identified genes, delineate the pathway 

they’re part of, study patterns of gene variation, and identify possible therapeutic targets.41,42 A 

better understanding of molecular mechanisms is necessary to identify target genes and novel 

therapeutic strategies.43,44 

In this study, 923 (278 downregulated and 645 upregulated) genes were differentially expressed. 

From a constructed protein-protein interaction network, 73 hub genes were selected. These 73 

hub genes were differentially expressed between breast cancer and normal tissues. KEGG 
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pathway enrichment analysis revealed that the differentially expressed genes and hub genes 

were particularly enriched in three pathways: pathways associated with cancer, the PI3K‒Akt 

signaling pathway, and focal adhesion. 

Hub genes primarily activate pathways involving PI3K–Akt signaling and focal adhesion, both of 

which are associated with the motility, growth, and survival of cancer cells. The 

phosphatidylinositol 3-kinase (PI3K) pathway coordinates intracellular responses such as survival, 

cell growth, differentiation, cellular metabolism, and cytoskeletal reorganization to extracellular 

stimulators. This pathway occurs in many human cancers.45 The PI3K pathway is a novel pathway 

for therapeutic targeting. Many drugs that target various components of this pathway are now 

in clinical trials. 46 Focal adhesions (FAs) are multiprotein structures that connect the cytoskeleton 

of a cell to the extracellular matrix through integrins. Cellular adhesion is an essential process 

involved in motility. 47 Changes in the expression of these molecules can induce cell death or 

change the size of individual cell-matrix interactions.48 The targeting of FA proteins can lead to 

the sensitization of cancer cells to treatment.49 Enrichment analysis also showed that module 3 

genes work in a role involving cell cycle regulation, a therapeutic target that is established in 

breast cancer. For instance, CDK1, a hub gene from module 3, coordinates cell division in 

mammalian cells by regulating the G1/S transition by coupling Cyclin D1 with extracellular 

signals.50 In several cancers, cell cycle progression is correlated with the dysregulation of CDKs 

(cyclin dependent kinases), and this mechanism contributes to abnormal cell proliferation.51 

Selective CDK inhibitors against CDK4 and CDK6 have been approved by the FDA for patients with 

metastatic hormone receptor-positive breast cancer, while earlier-generation pan-CDK 

inhibitors, those that inhibit multiple cyclin-dependent kinases, have not been able to gain 
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approval for clinical use. First-generation pan-CDKIs, such as Flavopiridol and Rocovitine, and 

second-generation CDKIs, such as Dinaciclib and Roniciclib, are some inhibitors that are under 

development for targeting cancer.52 Our analysis revealed that CCNB1, CDC20 BUB1B are module 

3 genes that affects the cell cycle pathway in breast cancer tissues. Recent studies have also 

shown that high expression of CCNB1,53 CDC20,54 BUB1B 55  is associated with poor prognosis in 

patients with breast cancer. Module two genes promote mainly the IL-17 signaling pathway. The 

pro-inflammatory cytokine interleukin-17 is important in promoting tumor proliferation and 

metastasis and is significantly correlated with poor prognosis in breast cancer patients.56 The IL-

17 superfamily of T-cell-derived cytokines consists of six ligands (IL-17A/IL-17, IL-17B, IL-17C, IL-

17D, IL-17E/IL-25, and IL-17F) and five receptors (IL-17RA, IL-17RB/IL-25R, IL-17RC, IL-17RD/SEF 

and IL-17RE).57 In breast cancer, tumor-infiltrating lymphocytes (TILs) produce mainly IL-17.58 

Recent studies in mice have found therapeutic value in IL-17A, IL-17B, and IL-17RB inhibitors as 

targeted therapies for breast cancer. Antitumor activities are enhanced with the use of IL-17E 

with cisplatin or paclitaxel.59 

By constructing a PPI network, ALB, EGFR, EZH2, FN1, JUN, CXCL8, MMP9, FOS, STAT1, and PTPRC 

were found to have elevated degrees of connectivity and betweenness centralities across the 

network. EGFR is also a tyrosine kinase receptor that normally functions to promote cell 

proliferation. However, its overexpression leads to tumorigenesis and aggressive growth, and 

several anti-EGFR therapies are in development.60,61 EZH2 is a transcriptional repressor that has 

been documented as a biomarker in advanced breast cancer, and we know that there are several 

inhibitors in development.62 High levels of EZH2 transcript and protein, when expressed in 

immortalized human mammary epithelial cell lines, enable those cells to grow independently and 
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are linked with invasive carcinoma as well as breast cancer metastases.63,64 A recent study 

indicated that when EZH2 was inhibited in inflammatory BC cells, it inhibited tumor growth.65 

FN1 (fibronectin 1) gene targets a glycoprotein that has poor prognosis for many cancers; 

inhibition of FN1 has inhibited proliferation and metastasis in models of breast cancer.66-70 The 

JUN proto-oncogene enhances angiogenesis and proliferation, c-JUN protein also regulates 

glutaminase and its sensitivity to therapy.71-73 C-X-C motif chemokine ligand 8 (CXCL8, interleukin 

8) is known to enhance cell proliferation and inhibit apoptosis in different cancers, including 

breast cancer.74,75 When CXCL8 is overexpressed, it can promote tumorigenesis and metastasis 

and should be considered a potential biomarker of metastasis for a variety of cancers, including 

BC.76-79 Matrix metalloproteinase 9 (MMP-9) has roles in the remodeling and invasion of the 

extracellular matrix, which is elevated in BC. In breast cancer, there are various biosensors 

currently improving the detection of MMP-9.80,81 Additionally, FOS family protein dysregulation, 

along with the JUN family proteins in AP-1 (transcriptional) complexes, is associated with cellular 

proliferation and breast cancer development.82,83  

Besides the core hub genes EGFR, EZH2, FN1, CXCL8, MMP9, JUN, and FOS, STAT1, PTPRC, and 

especially ALB have received less description within breast cancer literature. ALB encodes the 

most abundant protein in extracellular fluids.84 Albumin is responsible for maintaining colloid 

osmotic pressure and acts as a carrier for many endogenous and exogenous compounds. Human 

serum albumin (HAS) is a distinguished biomarker for many diseases, including cancer, and 

albumin is clinically used for the treatment of various diseases.85 Many studies have shown that 

hypoalbuminemia is associated with many cancers because of malnutrition and systemic 

inflammatory responses.86-88 In a previous study, ALB was also a hub gene with the highest degree 
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in Wilms tumor,89 whereas upregulation of ALB could be associated with colorectal cancer liver 

metastasis and hepatocellular carcinoma. Many studies have shown that lower levels of serum 

ALB have been associated with poor survival in many cancers for decades. However, few studies 

have investigated the prognostic value of ALB in patients with breast cancer, and few studies 

have specifically focused on the ALB expression level in patients with BC.90-93 

Our analysis revealed that the signal transducer and activator of transcription 1 (STAT1), an 

essential component of interferon (IFN) signaling, is underexpressed. Stat1 can act as an 

oncogene or an antioncogene. The decision as to whether STAT1 is oncogenic or antioncogenic 

depends on the specific genetic background and type of cancer.94 Previous studies reported 

conflicting findings about the role of STAT1 in the primary tumor development and growth of 

breast cancer. Stat1 has been proposed to serve a suppressive role in tumor development and 

may even help in suppressing cancer development.95-98 Although one study found that increased 

STAT1 activation is associated with more favorable outcomes for breast cancer patients,99 two 

other studies found that increased STAT1 mRNA is associated with worse survival. This difference 

underscores the context-dependent and contradictive role of STAT1 in breast cancer progression. 

100,101 However, another study revealed that the overexpression of Stat1 can play an oncogenic 

role in breast tumor growth.102 In addition, anthracyclines, such as doxorubicin, are anticancer 

treatments in the clinic that can increase the activation of STAT1 in breast cancer cells.103,104 

Protein tyrosine phosphatases (PTPs) have a specific subtype known as receptor-type PTPs 

(PTPRs).105 The protein tyrosine phosphatase receptor type C (PTPRC) gene encodes PTPRC, also 

known as the CD45 antigen or leukocyte common antigen (LCA), which is a transmembrane 

glycoprotein and a vital regulatory factor that is involved in the modulation of antigen receptor 



17 
 

signaling pathways in both T lymphocytes and B lymphocytes.106,107 PTPRC is amplified in 11.2% 

(108 of 962) of breast cancer samples, with the highest proportion of copy number amplifications 

among the PTPR genes reported in the TCGA database for all cancers.105 A study showed that 

lower expression of PTPRC caused increased resistance to paclitaxel in triple-negative breast 

cancer cell lines. 108 Little research has been conducted on PTPRC expression in BC; however, our 

analysis revealed that this gene was under-expressed. These results demonstrated that the core 

genes might be key players in the progression of BC. 

Finally, survival data analyses demonstrated a robust relationship between the expression levels 

of several hub genes and clinical outcome in breast cancer patients. Kinesin family member 11 

(KIF11), a motor protein critical for spindle dynamics, showed poor OS (HR=1.54, log-rank P < 1E-

16), 109 is associated with poor prognosis. Similarly, BRCA1 alterations in its expression were 

related to poor prognosis in BC patients (HR=1.41 (1.28–1.56), log-rank P= 2.5E-11). .110 

Overexpression of AURKA, a driver of tumorigenesis, was associated with poor OS (HR=1.89, log-

rank P < 1E-16), supporting its candidacy for targeted therapies.111-113 CCNB1, a cell cycle 

regulator, also had prognostic value (HR=1.53, log-rank P=3.8e-08).114-117 

Further analysis revealed that RRM2 (HR=1.83, log-rank P < 1e-16),118,119 cell division cycle 20 

(CDC20) (HR=1.9 (1.71–2.11), log-rank < 1e-16),120-123 CDC2 (CDK1) (HR=1.68 (1.52–1.68), log-

rank P < 1E-16), 124,125 were also associated with poor OS in BC patients. Lastly, SSK (also known 

as BUB1B) gene expression is crucial for the production of BubR1, a key protein that mediates 

spindle checkpoint activation.126 Increased expression of BUB1B was associated with worse OS in 

BC patients.127,128 
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By studying 73 hub genes associated with breast cancer, this study not only validated known 

biomarkers, but also augmented methodological integrity by validating previous experimental 

and review based results. Interestingly, a gene subset including AOX1, LOC102723407, HSD17B6, 

ADH1C, ADH1B, EGR2, LTF, LAMA2, H2AC8, and H4C8 was not well researched to date in breast 

cancer. While these were discovered through integrative enrichment and survival analyses, 

which demonstrate an added element of novelty, the ability to present such genes can have 

implications for future avenues of research as noteworthy candidates. These genes may provide 

possible therapeutic significance and unexplored mechanistic potential. In general, these results 

further the biology of breast cancer and provide new molecular targets. 

AOX1 is under expression in some cancers, and is proposed to influence chemoresistance and 

redox homeostasis.129-132 The LOC102723407 gene is expressed at significant levels in some 

cancers, though research is limited.133 HSD17B6 regulates steroid hormone metabolism, and has 

been associated with lung, prostate, and hepatocellular cancer.134,135 Levels of ADH1B and 

ADH1C, which are the main enzymes involved in alcohol and retinol metabolism, were associated 

with tumor aggression and metabolic adaptation, particularly in triple-negative breast 

cancer.136,137 Recent studies showed that  EGR2 emerged as a central transcription factor that 

was induced in tumor-infiltrating CD8⁺ T cells, showing a role in T-cell exhaustion and tumor 

immune evasion, particularly in HER2-enriched tumor microenvironments.138 LTF encodes 

lactotransferrin, one of the tumour-suppressing proteins, and may serve as a prognostic marker 

in several cancers, mediating immune effects.139,140 LAMA2 encodes an important structural 

component of the basement membrane and is a tumor suppressor in several cancers. Its reduced 

expression through promoter hypermethylation is associated with malignant traits such as 
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invasion and metastasis through MAPK and PI3K/AKT pathway.141,142 The histone cluster variants 

H2AC8 and H4C8 exhibit atypical expression in high-grade tumors, suggesting they are involved 

in chromatin instability and epigenetic dysregulation.143-145 

There were several limitations in this study, including the following. First, only one dataset was 

observed in this study. Compared with studies with multiple microarray datasets, these results 

may be less reliable. Second, when the DEGs were analyzed, several factors, such as age, race, 

tumor stage, and patient classification, were not considered. Third, subtype-specific survival 

analysis was not undertaken which diminishes the clinical relevance of the findings of this 

research due to the heterogeneity of breast cancer. Future studies should incorporate subtype-

stratified analyses to better capture prognostic differences across molecular classifications. This 

would enhance the translational value of the research and support more personalized treatment 

strategies. 

Conclusion 

In summary, bioinformatics analysis revealed 73 hub genes that were significantly enriched in 

important signaling pathways, such as PI3K-Akt and focal adhesion, among others. The study 

presented survival analysis and demonstrated that more than 78.08% of hub genes exhibited 

expression patterns that correlated with poor prognosis in BC patients. Together, these results 

elucidated the molecular basis for breast cancer progression, and these genes may serve as 

targets for biomarker identification and targeted therapy. Although the results shown above 

require verification via in vivo and in vitro analyses, our study provides a new direction for further 

studies on breast cancer. 
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Figure captions 

 

Figure 1. Flow diagram of the bioinformatics analysis in the present study.  
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Figure 2. Identification of DEGs from the GSE124646 dataset in BC tissues compared with normal 

breast tissues.| Log2FC| &gt; 1.5 and P value &lt; 0.01 were used as selection criteria for DEGs. 

(A)Volcano plot of differential expression analysis. The red dots represent upregulated genes, 

and the blue dots represent downregulated genes. (B)Heatmap of 10 normal and 10 BC samples. 

The heatmap represents the differential expression profiles of DEGs (|log2FC| &gt;1.5, p-value 

&lt; 0.01) in the GES124646 microarray. (C)Box plot representations of the distribution of data 

after normalization via the MAS5 method. Abbreviations: DEGs, differentially expressed genes; 

BC: breast cancer 
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Figure 3. Protein-protein interaction network constructed with the hub genes and module 

screening constructed via the STRING online database and visualized via Cytoscape. Notes: The 

diameter of each node indicates the degree of connectivity, and the intensity of the color of each 

node indicates betweenness for each node in the network. A higher degree of the node 

represents a hub gene with more connections to other hub genes. The whole PPI network of 

proteins is encoded by the hub genes (A) and the network of four functional clusters (B-E). 

Abbreviations: PPI, protein-protein interaction. 
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Figure 4. GO enrichment analysis of DEGs. (A-C) Dot plot of the results of the GO enrichment 

analysis of molecular function (A), cellular component (B), and biological process (C) terms. (D) 

Bar graph of the top 10 GO terms of the DEGs. Terms. Abbreviations: DEGs, differentially 

expressed genes; GO, gene ontology 
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Figure 5. GO enrichment analysis of the hub genes. (A-C) Dot plot of the results of the GO 

enrichment analysis of molecular function (A), cellular component (B), and biological process (C) 

terms. (D) Bar graph of the top 10 GO terms of the hub genes. Abbreviations: GO, gene ontology. 
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Figure 6. KEGG enrichment analysis of DEGs (A) and hub genes (B). Abbreviations: DEGs, 

differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes. 
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Figure 7. Expression profiles of the hub genes in BC patients. The top 10 hub genes with the 

highest degree were analyzed via the GEPIA online database to further verify the expression level 

of the hub genes between BC tissues and normal tissues. The pink box represents BC samples, 

and the gray box represents normal samples.  



38 
 

Tables 

Table 1. Differentially expressed genes. 923 differentially expressed genes (DEGs), including 645 

upregulated genes and 278 downregulated genes, were identified and confirmed from the Gene 

Expression Omnibus (GEO) database. 

Regulation  DEGs (gene symbol) 

Upregulated COL11A1, COL10A1, PITX1, NEK2, IFI44L, COL10A1, TOP2A, 

MMP1, INHBA, COMP, COL11A1, CXCL11, MMP11, 

NUSAP1, CST1, BIRC5, ASPM, ISG15, FOXM1, CXCL10, 

MMP9, STAT1, FGFR3, NDC80, CEP55, NA, RRM2, TOP2A, 

SAC3D1, NKG7, GINS2, TACC3, CXCL9, LMNB1, KIF20A, 

MMP11, EZH2, S100P, CDK1, CXCL11, IL21R, NA, PITX1, NA, 

RSAD2, NSD2, H2AC8, H2BC5, DLGAP5, SPP1, TNNT1, 

SNX10, MYBL1, NA, IL32, PLAUR, MKI67, CKS2, AURKA, 

SULF1, NA, RGS1, MELK, STAT1, NA, HJURP, CDCA3, IFI27, 

H2BC9, PCLAF, CDC20, NA, IFI6, ADAMDEC1, AURKA, NA, 

CD52, MNDA, NA, CENPM, CXCL8, HSD17B6, SLC2A6, FN1, 

NCAPG, NA, SLC15A3, SLAMF8, STAT1, GINS1, MILR1, 

LAMP3, TK1, H2BS1, NCAPG, STAT1, H1-2, NOD2, 

SERPINA6, SYK, OAS2, NPL, FANCI, NUP210, NA, PLXNC1, 

FN1, NSD2, KPNA2, LEF1, STAT1, MCM4, BIRC5, LILRB1, 

NUSAP1, TPX2, CDK1, BST2, FCMR, FN1, BGN, CD52, RRM2, 
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E2F8, LYZ, NA, LILRB3, DPP3, CCN4, GTSE1, IDO1, RNF19B, 

SAMSN1, SH2D1A, PAFAH1B3, GYPA, CDCA8, LILRB3, BGN, 

TFRC, RHOD, FN1, LILRB3, AQP9, CCNB2, NA, HSD17B6, 

NCLN, NA, KIFC1, CLIC3, YKT6, SERPINA1, CLEC4A, BUB1, 

AP1S1, NA, SQSTM1, IFIH1, MX1, NFKB2, SULF1, IFIT1, MAZ, 

CCR5, SULF1, NA, ATP13A2, TRAF3IP3, CDK1, H1-4, LTB, 

BGN, CENPN, PCYT1B, CENPE, MAD2L1, GK, TAP1, 

SERPINA1, NA, LST1, UBE2S, KIF11, PRC1, STK10, ATP2C1, 

KIF26B, H2AX, MYBL2, CTSD, CD72, KPNA2, SNX24, TGM2, 

METRN, PPIF, F12, GBP1, GZMB, RGS14, PBK, SLC6A9, 

THBS1, SQLE, LCK, TDO2, ADAM8, IRF7, UNC5B, HCP5, 

CANT1, TREM1, TYMP, APOC1, P2RY10, ELF4, LILRB1, 

GZMK, H4C8, MRPL35, BUB1, E2F5, CST5, HMGB3, HMMR, 

SHCBP1, NA, OAS1, PTPRC, HLA-C, SERPINH1, CCL19, HLA-

DQB1, CSF2RA, TGM2, RGS1, ERCC6L, CNTNAP2, PMAIP1, 

COL1A2, NA, MSC, CFB, GK, CAPG, PTTG3P, EMC1, ACOT7, 

TRAT1, NKAIN1, BUB1B, NA, TFRC, SLC19A1, MSR1, CENPF, 

UBE2C, MFAP2, RAC2, FAM49B, NA, CENPF, JPT1, SPI1, 

CD86, TMEM127, ITGAL, CCNB1, H2BC5, TPI1, NA, HLA-

DQB1, ITGAX, USP18, PSMC4, LRRC15, BRCA1 

Downregulated LTF, RBP4, ADH1B, PPP1R1A, NA, KRT15, NA, MYH11, NA, 

LPL, WIF1, SCGB1D2, DST, APOD, CSN3, DLK1, FOSB, LEP, 
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NA, PLIN1, MYH11, NA, GPD1, DCX, HLF, FABP4, ELF5, 

COL17A1, ADH1B, CSN1S1, OGN, OXTR, LYVE1, DST, ACACB, 

MT1M, SVEP1, DZIP1, SOSTDC1, OLFM4, PAMR1, GPD1, 

PIP, ADIPOQ, CNN1, PDK4, MME, NA, ZBTB16, PTN, NA, KIT, 

SCGB2A1, HLF, CAPN6, KRT14, CXCL2, SLC26A3, TMPRSS2, 

FAXDC2, GULP1, NA, SFRP1, SCGB2A2, ABCA8, TIMP4, 

SRPX, SORBS1, LIPE, FHL1, FKBP5, FHL1, CLDN8, NTRK2, 

ITGA7, SCN3A, CFD, MYH11, LIFR, FHL1, GREM2, GPM6B, 

LPL, EZH1, SFRP1, CHRDL1, SLIT3, LMOD1, RELN, DUSP6, 

NA, GPC3, MAOB, RUNX1T1, NA, GABRP, NA, NA, GPM6B, 

HSPB2, NTRK2, SFRP1, NFIB, TPPP3, BBOX1, HLF, JCHAIN, 

GPM6B, PTN, MFAP4, HPSE2, SOX10, CXCL12, NA, SPRY2, 

CA4, ELF5, NA, FHL1, DPT, S100B, CD36, TF, EGFR, NPR1, 

DPT, FXYD1, NA, NTRK2, HBB, PENK, NA, CES1, MME, PTN, 

NA, PEG3, MYH11, NA, NSG1, FHL1, LTBP4, NFIB, LAMA3, 

NA, CIDEA, CLDN5, NA, LYVE1, NA, SYNM, NLGN4X, FOS, 

SPTBN1, HOXA5, ACACB, NA, TGFBR3, CSN2, IGF1, MAOA, 

MIA, LDB2, CAB39L, EDN3, NA, DUSP1, LAMC3, EDNRB, 

TTYH1, LTBP4, KRT5, MATN2, NA, TGFBR2, FGFR2, AREG, 

DMD, IGFBP6, PPP1R12B, PCOLCE2, CD36, LHFPL6, ACACB, 

PDE9A, NA, CDKN1C, NA, TAT, C1orf21, TNFRSF17, 

FAM107A, FAM13A, NA, GULP1, PLPP3, GPX3, ADH1C, 
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OPRPN, CX3CL1, EIF1, CYBRD1, C7, NDRG2, GYG2, DCN, 

MYLK, ACKR1, ABCA6, NA, NAV3, MFAP5, IGF1, ITM2A, 

CX3CL1, EDNRB, ALB, PPP2R1B, ACSM5, RBM5, HBB, 

CDKN1C, CCL21, NA, NA, HBB, MYBPC1, HOXA7, HPGD, 

CAPN6, CRYAB, PPARG, NDRG2, GHR, MYOC, CRABP1, NA, 

GSN, FAM13A, ADH1B, ARL4A, LAMA2, IGF1, RUNX1T1, 

SOCS2, GSN, TCF7L2, EFHC1, RECK, NR4A2, MMRN1, CEL, 

PDGFD, F3, MEG3, PDGFRA, DCLK1, AASS, LAMA2, KLF4, 

MAOA, DCN, FMO2, AHNAK, NA, GRAMD2B, EDNRB, 

PDZD2, AMIGO2, CITED1, CPE, CDO1, CIDEC, KCNJ8, NA, 

SNX1, NA, SCN3B, DPT, NA, ITGA7, ZNF334, TFPI, ATP1A2, 

ZNF711, TAC1, ACSM1, TCN1, MOCS1, MT1X, TP63, TFPI, 

GIPC2, DCN, SGCE, NA, MEG3, NEDD4L, MEGF9, TP63, KLF4, 

CDKN1C, PLAGL1, SLC25A37, SERPINA5, TF, CORO2B, 

MEOX2, COL14A1, GPX3, PCK1, JUN, RGS2, RRAD, GPM6A, 

CPE, IGH, ARHGAP19, PELI2, CAV1, SLC6A14, PROS1, PPL, 

SLC22A3, FAM149A, NAALAD2, F10, PYGB, FBLN5, CHST3, 

MBD2, AGTR1, PDE2A, EGR1, BHMT2, MAOA, NOVA1, 

PLSCR4, OMD, SH3BP2, MAF, GPM6A, CAV1, MPPED2, 

ADAMTS5, PDGFRL, NA, AOC3, ITIH5, AK4, NA, NUDT2, 

ADAMTS1, NFIB, LAMA2, NFIB, NA, CBX7, PDLIM4, ID4, 

TNN, ALDH1A1, HEY2, EHD2, GYG2, FAM149A, CAV2, TFPI, 
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CRY2, BMP4, ZNF230, SETD4, NRG2, PLPP3, KLHL29, DCN, 

TIE1, GPRASP1, LRRC17, KLF9, RND3, PLPP3, AK5, ANKZF1, 

GRIK2, ACTG2, LRP1, TCF7L2, IGFBP1, NCALD, CAVIN2, 

MFAP5, TFPI, HEY1, NFIB, SPATA6, PLA2R1, ZBTB20, SLPI, 

ITM2A, AGTR1, PLEKHS1, ACACB, NFIB, CSRNP3, ADD3, 

LAMA4, XIST, NA, GRB10, CHL1, NFASC, SUN1, SORBS2, 

KLF9, COX7A1, PIK3R1, GPM6B, DUSP6, CFH, TCF7L2, 

PCDH9, DIXDC1, LOC389906, PTHLH, NR4A1, PPP1R15A, 

TRIM29, ARID5B, HSD17B2, GNAL, ARHGAP6, FOXI1, ID4, 

ALDH1A3, FBLN1, KLF3-AS1, NKTR, SNCAIP, MAFF, IL11RA, 

PER2, ENPEP, HNRNPH1, P3H2, SORBS1, FAXDC2, SLIT3, 

NA, NA, METTL7A, NA, 1-Mar, ANGPTL4, EHF, NID1, CCN1, 

IGF1, NA, FOXO3, CAMSAP1, FZD7, MED6, SLC13A2, 

TSC22D3, PARD3, FMO1, ADD3, JUN, FHL5, VSTM4, KLK11, 

ALDH1L1, ADGRA2, SLCO1A2, ANK2, TENM1, FGF2, 

NMNAT2, XIST, PRELP, TNMD, ASPH, DCX, SLC27A6, FBLN1, 

EYA2, AOX1, FGF1, EMP1, PLAGL1, ABLIM1, NA, SGCD, 

FBLN1, CTSG, SPTBN1, MAFK, C14orf132, NPR2, ASIC1, 

PER2, NA, SOCS2, SPRY1, EREG, OLFM1, TRIM29, TNS1, 

PDLIM4, SEMA6A, KCNAB1, HGF, TRMT9B, CACNA1G, 

PNISR, FAM13A, PTHLH, PDLIM3, ADD3, GPD1L, ENPEP, 

CDKN1C, LAMB3, IL33, MT1X, IRS1, FHOD3, PRSS12, NFIB, 
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GYG2, MID1, ADAMTS8, NA, PEG3, KIZ, PIK3C2G, IGLC1, 

ACTA2, CAPN3, TFAP2C, RASL10A, TM4SF1, CSRP1, 

RAPGEF3, AGFG2, ADGRL3, SOBP, EGFR, EFEMP1, NPR1, 

TXNIP, SPARCL1, CAT, PIGR, MRC1, POU6F1, PLXDC1, NA, 

SEMA3C, DKK3, TRIM33, RRP15, LIMCH1, CAV2, NA, 

RCAN1, ABCF2, ATP1A2, RRAGD, GPER1, LRRC36, JUN, 

ANPEP, TNS1, COL14A1, GULP1, OLFML2A, ADD3, PID1, 

STEAP4, ENPP2, NA, SLC44A1, CA3, KLK5, RAI2, TAGLN, 

SESN1, ATF3, CIRBP, COL4A3, ANKH, PART1, PHYHIP, 

EWSR1, TRPC1, PALMD, GAS7, PIK3R1, DST, DCLK1, TRMO, 

EBF2, GAS7, NA, PTPRB, KLK10, DPYSL2, CFAP69, TRIO, 

MT1E, PIK3R1, MAP1LC3C, NA, SCN7A, NA, TMEM47, DST, 

AOX1, TGFBR2, DENND2A, EGR2, MPZL2, TCF7L2, KCNMA1, 

TXNIP, FER, EXOC7, RGCC, LRP2, KLK7, KCNAB1, WLS, 

MKRN2, FMOD, MEIS2, NES, PGF, EDN1, GOLGA8A, NA, 

ZBTB20, COL7A1, NRG2 
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Table 2. Gene sets of each module and the top KEGG pathway terms 

 

module gene Pathways in KEGG analysis 

0 ADH1B, ALDH1A1, MAOB, 

MAOA, AOX1, ADH1C, 

HSD17B6 

PI3K-Akt signaling pathway 

Focal adhesion 

Pathways in cancer 

ECM-receptor interaction 

Complement and coagulation 

cascades 

Malaria 

PPAR signaling pathway 

1 FABP4, ADIPOQ, HGF, LRP1, 

FGF2, PPARG, ALB, COL1A2, 

PLIN1, IRS1, LEP, CAV1, FN1, 

IGF1, LPL, CD36, DCN, LTF, 

PDGFRA, THBS1, EGFR, KIT, 

BGN, LOC102723407, LAMA2, 

FGFR3, FGFR2, PIK3R1, 

MYH11 

PI3K-Akt signaling pathway 

Focal adhesion 

Proteoglycans in cancer 

Rap1 signaling pathway 

Pathways in cancer 

Ras signaling pathway 

AMPK signaling pathway 

2 CXCL10, CXCL8, STAT1, JUN, 

MMP9, CXCL12, PTPRC, 

IL-17 signaling pathway 
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CX3CL1, EGR1, CCR5, LCK, 

SYK, FOS, IRF7, CXCL2, FOSB, 

IFIT1, ISG15, EGR2 

Kaposi sarcoma-associated 

herpesvirus infection 

Hepatitis B 

Chemokine signaling pathway 

Viral protein interaction with 

cytokine and cytokine 

receptor 

Toll-like receptor signaling 

pathway 

TNF signaling pathway 

3 CCNB1, KIF11, CDK1, BRCA1, 

AURKA, EZH2, HJURP, RRM2, 

BUB1B, KIF20A, CDCA8, 

UBE2C, BIRC5, CDC20, TACC3, 

TPX2, H2AC8, H4C8 

Cell cycle 

Oocyte meiosis 

p53 signaling pathway 

Progesterone-mediated 

oocyte maturation 

Ubiquitin mediated 

proteolysis 

Viral carcinogenesis 

Systemic lupus 

erythematosus 

 

 


