Research Article

Identification of key pathways and hub genes in breast cancer via a systems

biology approach

Seyedeh Fatemeh Angoshtan, Zeinab Mori, Saeideh Naeimi, ElInaz Mehdizadeh Aghdam
DOI: 10.34172/PS.025.42698

To appear in: Pharmaceutical Science (https://ps.tbzmed.ac.ir/)

Received date: 23 May 2025
Revised date: 16 Sep 2025
Accepted date: 17 Sep 2025

Please cite this article as: Angoshtan SF, Mori Z, Naeimi S, Mehdizadeh Aghdam E. Identification
of key pathways and hub genes in breast cancer via a systems biology approach. Pharm Sci. 2026.

Doi: 10.34172/PS.025. 42698

This is a PDF file of a manuscript that have been accepted for publication. It is assigned to an issue

after technical editing, formatting for publication and author proofing.


https://ps.tbzmed.ac.ir/

Identification of key pathways and hub genes in breast cancer via a systems

biology approach

Seyedeh Fatemeh Angoshtan?, Zeinab Mori%3, Saeideh Naeimi'*, Elnaz Mehdizadeh Aghdam?3*
1 Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
2 Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical
Sciences, Tabriz, Iran

3 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of

Medical Sciences, Tabriz, Iran

*Corresponding author(s). Saeideh Naeimi (Email: naeimis@semnan.ac.ir) and Elnaz Mehdizadeh

Aghdam (Email: emehdizadehaghdam@gmail.com)

tThese authors contributed equally to this work.



Abstract

Background: Breast cancer (BC) remains the leading cause of cancer-related mortality among
women globally. Despite significant advances in diagnosis and treatment, the molecular
mechanisms driving breast tumorigenesis are not yet fully elucidated. This study aimed to
identify key genes and signaling pathways associated with BC pathogenesis and prognosis
through comprehensive bioinformatic analysis.

Method: In this study, gene expression data from the GSE124646 dataset were retrieved from
the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were
identified based on the criteria of |log, fold change| > 1.5 and p-value < 0.01. Functional
enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, were conducted. In addition, protein—protein interaction
(PPI) network was constructed using STRING database and visualized using Cytoscape. Hub genes
were identified based on network topology (degree > 7; betweenness centrality between 0.005
and 1). Further validation was performed using the GEPIA web tool and Kaplan—Meier survival
analysis.

Results: A total of 923 DEGs were identified, comprising 645 upregulated and 278 downregulated
genes. Enrichment analysis revealed that these genes were predominantly involved in
extracellular matrix (ECM) organization and localized within collagen-containing ECM
components. Molecular function analysis indicated significant enrichment in glycosaminoglycan
binding. KEGG pathway analysis highlighted the PI3K-Akt signaling pathway as a major pathway
implicated in BC. 73 hub genes were identified and incorporated into the PPl network. Survival
analysis demonstrated that elevated expression of several hub genes was significantly associated
with poor prognosis. GEPIA analysis confirmed aberrant expression of these genes in BC tissues
compared to normal controls.

Conclusion: These findings enhance our understanding of the molecular underpinnings of breast
cancer and highlight potential diagnostic biomarkers and therapeutic targets. Furthermore, this
study identifies a subset of previously under-characterized genes, which may contribute to
refining the molecular taxonomy and treatment strategies of BC.
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1. Introduction



In the United States, breast cancer remains one of the most deadly cancers affecting women,
second only to other major cancer types. However, breast cancer mortality has declined in recent
years.! It is also the most common cancer in women.? According to the available global data from
2022, almost 20 million people were diagnosed with cancer (9.7 million people died of cancer
globally), which includes 36 cancer types in 185 countries. Breast cancer was the most diagnosed

cancer in women globally, with about 2.3 million new cases and 665,684 deaths worldwide. 3

BC can be classified into three major subtypes based on the presence or absence of molecular
markers. Subtypes of breast cancer affect the optimal therapy for each patient in addition to the
anatomic cancer stage and patient preferences.* BC is a multifactorial disease.”> Sex, age, and
blood group are known risk factors for breast cancer.®® Reproductive factors such as the age of
menarche, the age of menopause, pregnancy, and the ovulatory menstrual cycle significantly
affect the development of breast cancer.”® Genetic factors are correlated with breast cancer.°
Obesity, alcohol consumption, and smoking are associated with an increased risk of breast

cancer.1114

Early diagnosis and treatment of BC can lead to more successful treatments and a decrease in
the mortality rate of patients with this disease.'® BC can be diagnosed through mammaography,
ultrasound, magnetic resonance imaging (MRI), and high-end molecular bioimaging.

Unfortunately, these techniques detect BC at a later stage.'®!’

It is necessary to detect breast cancer at early stages to improve patient outcomes. Therefore,
with the use of microarray technology to detect breast cancer, advancements may be achieved.!®

Recent studies have shown that gene expression analysis may improve breast cancer prognosis



and treatment.'®2! DNA and protein analysis can be performed with microarrays, which are
powerful tools in biomedical research and are based on probe molecules attached to a planar

surface in a miniaturized grid pattern.??

For over two decades, the research community has analyzed gene expression in human cancers,
resulting in a vast amount of data. The development of DNA microarray technology in the late
1990s revolutionized how gene expression was analyzed.?3?* The development of additional
gene expression profiling technologies, such as RNA sequencing (RNA-seq), has shed light on the
specific genes that are differentially expressed, enabling a deeper understanding of novel
transcripts and providing a far more precise measurement of the levels of transcripts and their

isoforms.2>26

Systems biology is about increasing the awareness and understanding of biology and related
fields by joining the rules of engineering, physics, and math to the complexity of living systems
through a continuous process to illustrate the interrelated processes occurring within a cell. This
integration elucidates how environmental inputs and network alterations resulting from genomic
abnormalities in patient tumors influence cellular behavior and ultimately affect patient
outcomes.?’” Systems biology represents an approach that emphasizes a global perspective by
analyzing the entire network of interactions rather than focusing on individual proteins, genes,
or enzymes. This field has demonstrated that cellular proteins do not function in isolation;
instead, these genes and proteins are interconnected, forming a complex molecular network that

collaborates to fulfill specific functions.?®



The objective of our study was to discover novel biomarkers or hub genes from DEGs via an
integrated analysis of microarray data. We employed a bioinformatics approach to identify the
hub genes and differentially expressed genes between breast tumors and normal tissues. The PPI

network was created using the STRING database with the Cytoscape software for visualization.

Moreover, KEGG analysis and gene ontology (GO) utilising the Enricher web tool were performed
on the DEGs to gain relevant insights. Additionally, survival analysis and heatmaps were
generated. Through the analysis of gene expression levels and biological pathways, we studied
the genetic sources of faulty pathways in cancerous cells to identify potential targets for cancer
treatment. A novel discovery of our findings was a group of underrepresented genes that are not
widely studied in the breast cancer literature, adding another layer of awareness and suggesting

new molecular candidates beyond the standard biomarkers.

2. Materials and methods

2.1 Data collection

The gene expression data of 10 BC samples and 10 normal samples (GSE124646) from the GPL96
platform (Affymetrix Human Genome U133A Array) were obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Figure 1 shows a summary of the

steps accomplished.

2.2 Data preprocessing and identification of differentially expressed genes (DEGs)

The raw gene expression data were first processed using the MAS5 method, implemented
through the Affy package in R. Boxplots and histograms were generated to visualize the identified
DEGs. We then analyzed DEGs between BC and normal samples via significance analysis via the
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microarray method with the limma package. The filtering conditions were as follows: |log2-fold
change| >1.5 and P <0.01. A heatmap was plotted for the samples and DEGs via the heatmap

package in R software.

2.3 Construction of the protein-protein interaction network

For protein-level interactions, we used the STRING database (http://string-db.org/), which allows
you to map protein-protein interactions. In the STRING analysis, we only used interaction scores2
0.9, which are considered reliable confidence scores and used to build a network. 2° To visualize
the PPl network and identify core genes, Cytoscape software (version 3.6.0) was utilized. With
the threshold of a degree>7, 0.005<betweenness<1 hub genes were found. The thresholds were
chosen based on studies in the field of network biology, as well as studies that showed that highly
connected and central nodes are biologically important nodes in protein-protein interaction (PPI)
networks. Degree of network indicates how many interactions a node has directly, and the
degree threshold was used to show several biologically relevant hub genes by utilizing strong
connectivity.3%3! Betweenness centrality indicates how far a node lies on the shortest path
between other nodes. Betweenness centrality indicates whether a node is bridging bottlenecks
in the network.323* To confirm the choice of hub genes, functional enrichment, survival analysis,
and expression profiling were performed. All of these indicate the resulting genes are relevant

from a biological perspective and as prognostic factors.?®

The candidate modules were detected via Gephi. Gephi is software for graph visualization,
network analysis, and module development.3® By running the Fruchterman-Reingold Algorithm,

we create a force-directed layout algorithm.3” Several aspects of the hub gene network, including



the eigenvector, network diameter, closeness, and betweenness, were examined in Gephi.

Additionally, Gephi identified the hub gene clusters and candidate modules.

2.4 Enrichment analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of the DEGs

and hub genes were performed via Enrichr (https://maayanlab.cloud/Enrichr/). Enrichr contains

a wide range of gene sets and biological knowledge for further biological discoveries. Annotations
of the cellular components, biological processes, and molecular functions of the DEGs were
determined via Gene Ontology (GO) enrichment analysis. The R cluster profile package was used
to explore the results of the GO enrichment analysis. Additionally, GO enrichment plots were

drawn via a bioinformatics tool (http://www.bioinformatics.com.cn/). Gene Ontology introduced

the concept of systematically linking a collection of genes to a functional biological term.38 KEGG
is also used to understand high-level and genomic functions. It consists of genomic, chemical,

and network information.3°

2.5 Survival analysis of the hub genes

The Kaplan—Meier plotter database (http://kmplot.com/analysis/) was used to perform the
survival analysis. The Kaplan—Meier plotter is a website tool that can be utilized to assess the
impact of numerous genes on survival based on the EGA, TCGA, and GEO databases. In order to
evaluate how the identified hub genes could impact patient outcomes, we applied Kaplan—Meier
analysis, a statistical method often used to evaluate survival probabilities over time (P < 0.05 was

considered to indicate statistical significance).

2.6 Expression analysis of the hub genes
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Additionally, the GEPIA tool was used to validate the role of key genes in BC progression as well
as their expression levels in normal breast and BC samples to predict the prognostic value of the
hub genes. GEPIA is an online tool that can be employed for survival, correlation, gene
expression, and dimensionality reduction analyses in various cancers and normal tissues and

contains 9,736 tumors (1085 breast cancer samples) and 8,587 normal samples from the TCGA

and GTEx projects. 4°



3. Results

3.1 Identification of differentially expressed genes (DEGS)

GSE124646 was selected. The data of 10 breast cancer samples and 10 normal breast samples,
100% cancer tissue, and 100% normal tissue were normalized with the MASS5 algorithm in the
Affy package in R statistical software. A total of 22283 genes were identified. After filtering with
criteria of |log2FC| greater than 1.5 and p-value < 0.01, 923 differentially expressed genes were
identified. Of these, 645 genes had increased expression levels and 278 genes were

downregulated.(Figure 2) (Table 1).

3.2 PPI (Protein-Protein Interaction) Network and Module Analysis

The PPI network of DEGs was constructed with 307 nodes and 882 edges based on the STRING
database, with an interaction score of 0.9 as the threshold. The network was analyzed via
Cytoscape. Degree>7 and 0.005<betweenness<1 were set as the cutoff criteria. A total of 73
genes were selected as hub genes. Among these hub genes, ALB, ALDH1A1, EGFR, BRCA1, EZH2,
FN1, JUN, CXCL8, MMP9, FOS, CDK1, EGR1, STAT1, PTPRC, and IGF1 had relatively high
betweenness centralities, and ALB, EGFR, FN1, JUN, MMP9, CXCLS8, IGF1, STAT1, PTPRC, FOS,
FGF2, CXCL12, PDGFRA, EZH2, and BRCA1 were among the top 15 genes with high degrees of
connectivity. By using Gephi, the hub genes were divided into 4 significant modules, as presented

in Figure 3.

3.3 Enrichment analysis

Once again, our hub gene network was constructed in string, and by using Gephi, modules were
constructed. Four out of five modules were significant, as shown in Figure 3 and Table 2. To better
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understand the biological functions of the DEGs and hub genes, GO and KEGG enrichment
analyses were conducted. Highly expressed pathways and genes of each cluster were also
identified and displayed. In the biological process analysis, the DEGs were involved mainly in in
extracellular matrix and structural organizations, and positive regulation of protein kinase B
signaling. In the cellular component analysis, the DEGs were enriched mainly in the collagen-
containing extracellular matrix, basement membrane, and endoplasmic reticulum lumen.
According to the results of the molecular function analysis, the DEGs were enriched mainly in
glycosaminoglycan binding, extracellular matrix structural constituent, and heparin binding
(Figure 4). The biological process analysis indicated that these hub genes are likely to be vital
components of specific functions such as the positive regulation of intracellular signal
transduction. In the cellular component analysis, the hub genes were enriched mainly in spindle
regulation. In the molecular function analysis, the hub genes were enriched mainly in integrin
binding. The statistical significance of the GO term enrichment analysis is shown in
Supplementary 1 and Figure 5. KEGG analysis revealed that the DEGs were enriched in the PI3K-
Akt signaling pathway, focal adhesion, pathways in cancer, ECM-receptor interaction, and
complement and coagulation cascades. The hub genes were enriched in pathways related to
cancer, the PI3K-Akt signaling pathway, focal adhesion, proteoglycans in cancer, and pathways
related to cancer. In the KEGG enrichment figure, the -logio(p-value) scale represents statistical
significance for each pathway, with higher numbers indicating greater enrichment (Figure 6,

Supplementary 2)

3.4 Hub gene validation: Survival analysis and gene expression profiling of the hub

genes

11



Kaplan—Meier curves were plotted for the hub genes. The KM plot showed that the expression
of most of the hub genes significantly differed between the high- and low-expression groups
(Supplementary 3). These results indicate that 78.08% of the hub genes have prognostic
significance for breast cancer patients. Hazard ratios (HR) and log-rank p-values for all hub genes
assessed, which reflect the results of our survival analysis, are presented in Supplementary 4.
GEPIA was used to analyze the hub genes and compare their overall expression levels with those
of normal tissues. The results indicated that the hub genes were abnormally expressed in breast

cancer tissue compared with normal breast tissue (Figure 7).

4. Discussion

Breast cancer is a biologically diverse disease, characterized by considerable heterogeneity in
both its molecular characteristics and clinical behavior, driven by DNA alterations resulting in the
activation of oncogenes or the suppression of tumor suppressor genes. The development of array
technology allows surveys of gene expression, and with the aim of bioinformatics tools, a better
understanding of expression profiles has led to new approaches. Using these technologies
enables researchers to define the functions of newly identified genes, delineate the pathway
they’re part of, study patterns of gene variation, and identify possible therapeutic targets.*42 A
better understanding of molecular mechanisms is necessary to identify target genes and novel

therapeutic strategies.344

In this study, 923 (278 downregulated and 645 upregulated) genes were differentially expressed.
From a constructed protein-protein interaction network, 73 hub genes were selected. These 73

hub genes were differentially expressed between breast cancer and normal tissues. KEGG
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pathway enrichment analysis revealed that the differentially expressed genes and hub genes
were particularly enriched in three pathways: pathways associated with cancer, the PI3K-Akt

signaling pathway, and focal adhesion.

Hub genes primarily activate pathways involving PI3K—Akt signaling and focal adhesion, both of
which are associated with the motility, growth, and survival of cancer cells. The
phosphatidylinositol 3-kinase (PI3K) pathway coordinates intracellular responses such as survival,
cell growth, differentiation, cellular metabolism, and cytoskeletal reorganization to extracellular
stimulators. This pathway occurs in many human cancers.* The PI3K pathway is a novel pathway
for therapeutic targeting. Many drugs that target various components of this pathway are now
in clinical trials. 6 Focal adhesions (FAs) are multiprotein structures that connect the cytoskeleton
of a cell to the extracellular matrix through integrins. Cellular adhesion is an essential process
involved in motility. 7 Changes in the expression of these molecules can induce cell death or
change the size of individual cell-matrix interactions.*® The targeting of FA proteins can lead to
the sensitization of cancer cells to treatment.*® Enrichment analysis also showed that module 3
genes work in a role involving cell cycle regulation, a therapeutic target that is established in
breast cancer. For instance, CDK1, a hub gene from module 3, coordinates cell division in
mammalian cells by regulating the G1/S transition by coupling Cyclin D1 with extracellular
signals.® In several cancers, cell cycle progression is correlated with the dysregulation of CDKs
(cyclin dependent kinases), and this mechanism contributes to abnormal cell proliferation.>!
Selective CDK inhibitors against CDK4 and CDK6 have been approved by the FDA for patients with
metastatic hormone receptor-positive breast cancer, while earlier-generation pan-CDK

inhibitors, those that inhibit multiple cyclin-dependent kinases, have not been able to gain
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approval for clinical use. First-generation pan-CDKIs, such as Flavopiridol and Rocovitine, and
second-generation CDKIs, such as Dinaciclib and Roniciclib, are some inhibitors that are under
development for targeting cancer.”? Our analysis revealed that CCNB1, CDC20 BUB1B are module
3 genes that affects the cell cycle pathway in breast cancer tissues. Recent studies have also
shown that high expression of CCNB1,°3 CDC20,°* BUB1B >° is associated with poor prognosis in
patients with breast cancer. Module two genes promote mainly the IL-17 signaling pathway. The
pro-inflammatory cytokine interleukin-17 is important in promoting tumor proliferation and
metastasis and is significantly correlated with poor prognosis in breast cancer patients.”® The IL-
17 superfamily of T-cell-derived cytokines consists of six ligands (IL-17A/IL-17, IL-17B, IL-17C, IL-
17D, IL-17E/IL-25, and IL-17F) and five receptors (IL-17RA, IL-17RB/IL-25R, IL-17RC, IL-17RD/SEF
and IL-17RE).>” In breast cancer, tumor-infiltrating lymphocytes (TILs) produce mainly IL-17.%8
Recent studies in mice have found therapeutic value in IL-17A, IL-17B, and IL-17RB inhibitors as
targeted therapies for breast cancer. Antitumor activities are enhanced with the use of IL-17E

with cisplatin or paclitaxel.”®

By constructing a PPl network, ALB, EGFR, EZH2, FN1, JUN, CXCL8, MMP9, FOS, STAT1, and PTPRC
were found to have elevated degrees of connectivity and betweenness centralities across the
network. EGFR is also a tyrosine kinase receptor that normally functions to promote cell
proliferation. However, its overexpression leads to tumorigenesis and aggressive growth, and
several anti-EGFR therapies are in development.®%61 EZH2 is a transcriptional repressor that has
been documented as a biomarker in advanced breast cancer, and we know that there are several
inhibitors in development.®? High levels of EZH2 transcript and protein, when expressed in

immortalized human mammary epithelial cell lines, enable those cells to grow independently and
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are linked with invasive carcinoma as well as breast cancer metastases.®®%* A recent study
indicated that when EZH2 was inhibited in inflammatory BC cells, it inhibited tumor growth.®®
FN1 (fibronectin 1) gene targets a glycoprotein that has poor prognosis for many cancers;
inhibition of FN1 has inhibited proliferation and metastasis in models of breast cancer.®®7° The
JUN proto-oncogene enhances angiogenesis and proliferation, c-JUN protein also regulates
glutaminase and its sensitivity to therapy.’*”3 C-X-C motif chemokine ligand 8 (CXCLS, interleukin
8) is known to enhance cell proliferation and inhibit apoptosis in different cancers, including
breast cancer.”*”> When CXCL8 is overexpressed, it can promote tumorigenesis and metastasis
and should be considered a potential biomarker of metastasis for a variety of cancers, including
BC.”®7° Matrix metalloproteinase 9 (MMP-9) has roles in the remodeling and invasion of the
extracellular matrix, which is elevated in BC. In breast cancer, there are various biosensors
currently improving the detection of MMP-9.8981 Additionally, FOS family protein dysregulation,
along with the JUN family proteins in AP-1 (transcriptional) complexes, is associated with cellular

proliferation and breast cancer development.8283

Besides the core hub genes EGFR, EZH2, FN1, CXCL8, MMP9, JUN, and FOS, STAT1, PTPRC, and
especially ALB have received less description within breast cancer literature. ALB encodes the
most abundant protein in extracellular fluids.8* Albumin is responsible for maintaining colloid
osmotic pressure and acts as a carrier for many endogenous and exogenous compounds. Human
serum albumin (HAS) is a distinguished biomarker for many diseases, including cancer, and
albumin is clinically used for the treatment of various diseases.®> Many studies have shown that
hypoalbuminemia is associated with many cancers because of malnutrition and systemic

inflammatory responses.®88n a previous study, ALB was also a hub gene with the highest degree
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in Wilms tumor,® whereas upregulation of ALB could be associated with colorectal cancer liver
metastasis and hepatocellular carcinoma. Many studies have shown that lower levels of serum
ALB have been associated with poor survival in many cancers for decades. However, few studies
have investigated the prognostic value of ALB in patients with breast cancer, and few studies

have specifically focused on the ALB expression level in patients with BC.%0-%3

Our analysis revealed that the signal transducer and activator of transcription 1 (STAT1), an
essential component of interferon (IFN) signaling, is underexpressed. Statl can act as an
oncogene or an antioncogene. The decision as to whether STAT1 is oncogenic or antioncogenic
depends on the specific genetic background and type of cancer.?* Previous studies reported
conflicting findings about the role of STAT1 in the primary tumor development and growth of
breast cancer. Statl has been proposed to serve a suppressive role in tumor development and
may even help in suppressing cancer development.®>28 Although one study found that increased
STAT1 activation is associated with more favorable outcomes for breast cancer patients,” two
other studies found that increased STAT1 mRNA is associated with worse survival. This difference
underscores the context-dependent and contradictive role of STAT1 in breast cancer progression.
100,01 However, another study revealed that the overexpression of Statl can play an oncogenic
role in breast tumor growth.1%? In addition, anthracyclines, such as doxorubicin, are anticancer

treatments in the clinic that can increase the activation of STAT1 in breast cancer cells.103104

Protein tyrosine phosphatases (PTPs) have a specific subtype known as receptor-type PTPs
(PTPRs).1% The protein tyrosine phosphatase receptor type C (PTPRC) gene encodes PTPRC, also
known as the CD45 antigen or leukocyte common antigen (LCA), which is a transmembrane

glycoprotein and a vital regulatory factor that is involved in the modulation of antigen receptor
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signaling pathways in both T lymphocytes and B lymphocytes.1%107 PTPRC is amplified in 11.2%
(108 of 962) of breast cancer samples, with the highest proportion of copy number amplifications
among the PTPR genes reported in the TCGA database for all cancers.'% A study showed that
lower expression of PTPRC caused increased resistance to paclitaxel in triple-negative breast
cancer cell lines. 198 Little research has been conducted on PTPRC expression in BC; however, our
analysis revealed that this gene was under-expressed. These results demonstrated that the core

genes might be key players in the progression of BC.

Finally, survival data analyses demonstrated a robust relationship between the expression levels
of several hub genes and clinical outcome in breast cancer patients. Kinesin family member 11
(KIF11), a motor protein critical for spindle dynamics, showed poor OS (HR=1.54, log-rank P < 1E-
16), 199 is associated with poor prognosis. Similarly, BRCA1 alterations in its expression were

related to poor prognosis in BC patients (HR=1.41 (1.28-1.56), log-rank P= 2.5E-11). 110

Overexpression of AURKA, a driver of tumorigenesis, was associated with poor OS (HR=1.89, log-
rank P < 1E-16), supporting its candidacy for targeted therapies.!'*1!3 CCNB1, a cell cycle

regulator, also had prognostic value (HR=1.53, log-rank P=3.8e-08).114-117

Further analysis revealed that RRM2 (HR=1.83, log-rank P < 1e-16),1811° cell division cycle 20
(CDC20) (HR=1.9 (1.71-2.11), log-rank < le-16),'2%123 CDC2 (CDK1) (HR=1.68 (1.52-1.68), log-
rank P < 1E-16), 124125 were also associated with poor OS in BC patients. Lastly, SSK (also known
as BUB1B) gene expression is crucial for the production of BubR1, a key protein that mediates
spindle checkpoint activation.?® Increased expression of BUB1B was associated with worse OS in

BC patients.27/128
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By studying 73 hub genes associated with breast cancer, this study not only validated known
biomarkers, but also augmented methodological integrity by validating previous experimental
and review based results. Interestingly, a gene subset including AOX1, LOC102723407, HSD17BS6,
ADH1C, ADH1B, EGR2, LTF, LAMAZ2, H2AC8, and H4C8 was not well researched to date in breast
cancer. While these were discovered through integrative enrichment and survival analyses,
which demonstrate an added element of novelty, the ability to present such genes can have
implications for future avenues of research as noteworthy candidates. These genes may provide
possible therapeutic significance and unexplored mechanistic potential. In general, these results

further the biology of breast cancer and provide new molecular targets.

AOX1 is under expression in some cancers, and is proposed to influence chemoresistance and
redox homeostasis.’?*132 The LOC102723407 gene is expressed at significant levels in some
cancers, though research is limited.'33 HSD17B6 regulates steroid hormone metabolism, and has
been associated with lung, prostate, and hepatocellular cancer.'3#13> Levels of ADH1B and
ADH1C, which are the main enzymes involved in alcohol and retinol metabolism, were associated
with tumor aggression and metabolic adaptation, particularly in triple-negative breast
cancer.13%137 Recent studies showed that EGR2 emerged as a central transcription factor that
was induced in tumor-infiltrating CD8* T cells, showing a role in T-cell exhaustion and tumor
immune evasion, particularly in HER2-enriched tumor microenvironments.’3® LTF encodes
lactotransferrin, one of the tumour-suppressing proteins, and may serve as a prognostic marker
in several cancers, mediating immune effects.13140 LAMA2 encodes an important structural
component of the basement membrane and is a tumor suppressor in several cancers. Its reduced

expression through promoter hypermethylation is associated with malignant traits such as
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invasion and metastasis through MAPK and PI3K/AKT pathway.'*1142 The histone cluster variants
H2AC8 and H4C8 exhibit atypical expression in high-grade tumors, suggesting they are involved

in chromatin instability and epigenetic dysregulation.143-145

There were several limitations in this study, including the following. First, only one dataset was
observed in this study. Compared with studies with multiple microarray datasets, these results
may be less reliable. Second, when the DEGs were analyzed, several factors, such as age, race,
tumor stage, and patient classification, were not considered. Third, subtype-specific survival
analysis was not undertaken which diminishes the clinical relevance of the findings of this
research due to the heterogeneity of breast cancer. Future studies should incorporate subtype-
stratified analyses to better capture prognostic differences across molecular classifications. This
would enhance the translational value of the research and support more personalized treatment

strategies.

Conclusion

In summary, bioinformatics analysis revealed 73 hub genes that were significantly enriched in
important signaling pathways, such as PI3K-Akt and focal adhesion, among others. The study
presented survival analysis and demonstrated that more than 78.08% of hub genes exhibited
expression patterns that correlated with poor prognosis in BC patients. Together, these results
elucidated the molecular basis for breast cancer progression, and these genes may serve as
targets for biomarker identification and targeted therapy. Although the results shown above
require verification via in vivo and in vitro analyses, our study provides a new direction for further

studies on breast cancer.
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Figure 1. Flow diagram of the bioinformatics analysis in the present study.
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Figure 2. Identification of DEGs from the GSE124646 dataset in BC tissues compared with normal
breast tissues.| Log2FC| &gt; 1.5 and P value &It; 0.01 were used as selection criteria for DEGs.
(A)Volcano plot of differential expression analysis. The red dots represent upregulated genes,
and the blue dots represent downregulated genes. (B)Heatmap of 10 normal and 10 BC samples.
The heatmap represents the differential expression profiles of DEGs (|log2FC| &gt;1.5, p-value
&lt; 0.01) in the GES124646 microarray. (C)Box plot representations of the distribution of data
after normalization via the MAS5 method. Abbreviations: DEGs, differentially expressed genes;
BC: breast cancer
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Figure 3. Protein-protein interaction network constructed with the hub genes and module
screening constructed via the STRING online database and visualized via Cytoscape. Notes: The
diameter of each node indicates the degree of connectivity, and the intensity of the color of each
node indicates betweenness for each node in the network. A higher degree of the node
represents a hub gene with more connections to other hub genes. The whole PPl network of
proteins is encoded by the hub genes (A) and the network of four functional clusters (B-E).
Abbreviations: PPI, protein-protein interaction.
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Figure 5. GO enrichment analysis of the hub genes. (A-C) Dot plot of the results of the GO
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Tables

Table 1. Differentially expressed genes. 923 differentially expressed genes (DEGs), including 645

upregulated genes and 278 downregulated genes, were identified and confirmed from the Gene

Expression Omnibus (GEO) database.

Regulation

DEGs (gene symbol)

Upregulated

COL11A1, COL10A1, PITX1, NEK2, IFI44L, COL10A1, TOP2A,

MMP1, INHBA, COMP, COL11A1, CXCL11, MMP11,

NUSAP1, CST1, BIRC5, ASPM, ISG15, FOXM1, CXCL10,

MMP9, STAT1, FGFR3, NDC80, CEP55, NA, RRM2, TOP2A,

SAC3D1, NKG7, GINS2, TACC3, CXCLS, LMNB1, KIF20A,

MMP11, EZH2, S100P, CDK1, CXCL11, IL21R, NA, PITX1, NA,

RSAD2, NSD2, H2AC8, H2BC5, DLGAPS, SPP1, TNNT],

SNX10, MYBL1, NA, IL32, PLAUR, MKI67, CKS2, AURKA,

SULF1, NA, RGS1, MELK, STAT1, NA, HJURP, CDCAS3, IFI27,

H2BC9, PCLAF, CDC20, NA, IFI6, ADAMDEC1, AURKA, NA,

CD52, MNDA, NA, CENPM, CXCL8, HSD17B6, SLC2A6, FN1,

NCAPG, NA, SLC15A3, SLAMFS8, STAT1, GINS1, MILR],

LAMP3, TK1, H2BS1, NCAPG, STAT1, H1-2, NOD2,

SERPINAG6, SYK, OAS2, NPL, FANCI, NUP210, NA, PLXNC1,

FN1, NSD2, KPNA2, LEF1, STAT1, MCM4, BIRCS5, LILRB1,

NUSAP1, TPX2, CDK1, BST2, FCMR, FN1, BGN, CD52, RRM2,
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E2F8, LYZ, NA, LILRB3, DPP3, CCN4, GTSE1, IDO1, RNF19B,

SAMSN1, SH2D1A, PAFAH1B3, GYPA, CDCAS, LILRB3, BGN,

TFRC, RHOD, FN1, LILRB3, AQP9, CCNB2, NA, HSD17BS6,

NCLN, NA, KIFC1, CLIC3, YKT6, SERPINA1, CLEC4A, BUB1,

AP1S1, NA, SQSTM1, IFIH1, MX1, NFKB2, SULF1, IFIT1, MAZ,

CCR5, SULF1, NA, ATP13A2, TRAF3IP3, CDK1, H1-4, LTB,

BGN, CENPN, PCYT1B, CENPE, MAD2L1, GK, TAP1,

SERPINA1, NA, LST1, UBE2S, KIF11, PRC1, STK10, ATP2C1,

KIF26B, H2AX, MYBL2, CTSD, CD72, KPNA2, SNX24, TGM2,

METRN, PPIF, F12, GBP1, GZMB, RGS14, PBK, SLC6ASY,

THBS1, SQLE, LCK, TDO2, ADAMS, IRF7, UNC5B, HCPS,

CANT1, TREM1, TYMP, APOC1, P2RY10, ELF4, LILRB1,

GZMK, H4C8, MRPL35, BUB1, E2F5, CST5, HMGB3, HMMR,

SHCBP1, NA, OAS1, PTPRC, HLA-C, SERPINH1, CCL19, HLA-

DQB1, CSF2RA, TGM2, RGS1, ERCC6L, CNTNAP2, PMAIP1,

COL1A2, NA, MSC, CFB, GK, CAPG, PTTG3P, EMC1, ACOT7,

TRAT1, NKAIN1, BUB1B, NA, TFRC, SLC19A1, MSR1, CENPF,

UBE2C, MFAP2, RAC2, FAM49B, NA, CENPF, JPT1, SPI1,

CD86, TMEM127, ITGAL, CCNB1, H2BC5, TPI1, NA, HLA-

DQB1, ITGAX, USP18, PSMC4, LRRC15, BRCA1

Downregulated

LTF, RBP4, ADH1B, PPP1R1A, NA, KRT15, NA, MYH11, NA,

LPL, WIF1, SCGB1D2, DST, APOD, CSN3, DLK1, FOSB, LEP,
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NA, PLIN1, MYH11, NA, GPD1, DCX, HLF, FABP4, ELF5,
COL17A1, ADH1B, CSN1S1, OGN, OXTR, LYVE1, DST, ACACB,
MT1M, SVEP1, DZIP1, SOSTDC1, OLFM4, PAMR1, GPD1,
PIP, ADIPOQ, CNN1, PDK4, MME, NA, ZBTB16, PTN, NA, KIT,
SCGB2A1, HLF, CAPN6, KRT14, CXCL2, SLC26A3, TMPRSS2,
FAXDC2, GULP1, NA, SFRP1, SCGB2A2, ABCAS8, TIMP4,
SRPX, SORBS1, LIPE, FHL1, FKBP5, FHL1, CLDN8, NTRK2,
ITGA7, SCN3A, CFD, MYH11, LIFR, FHL1, GREM2, GPM6B,
LPL, EZH1, SFRP1, CHRDL1, SLIT3, LMOD1, RELN, DUSPS6,
NA, GPC3, MAOB, RUNX1T1, NA, GABRP, NA, NA, GPM6B,
HSPB2, NTRK2, SFRP1, NFIB, TPPP3, BBOX1, HLF, JCHAIN,
GPM6B, PTN, MFAP4, HPSE2, SOX10, CXCL12, NA, SPRY2,
CA4, ELF5, NA, FHL1, DPT, S100B, CD36, TF, EGFR, NPR1,
DPT, FXYD1, NA, NTRK2, HBB, PENK, NA, CES1, MME, PTN,
NA, PEG3, MYH11, NA, NSG1, FHL1, LTBP4, NFIB, LAMAS,
NA, CIDEA, CLDNS5, NA, LYVE1, NA, SYNM, NLGN4X, FOS,
SPTBN1, HOXAS5, ACACB, NA, TGFBR3, CSN2, IGF1, MAOA,
MIA, LDB2, CAB39L, EDN3, NA, DUSP1, LAMC3, EDNRB,
TTYH1, LTBP4, KRT5, MATN2, NA, TGFBR2, FGFR2, AREG,
DMD, IGFBP6, PPP1R12B, PCOLCE2, CD36, LHFPL6, ACACB,
PDESA, NA, CDKN1C, NA, TAT, Clorf21, TNFRSF17,

FAM107A, FAM13A, NA, GULP1, PLPP3, GPX3, ADHI1C,
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OPRPN, CX3CL1, EIF1, CYBRD1, C7, NDRG2, GYG2, DCN,
MYLK, ACKR1, ABCA6, NA, NAV3, MFAPS, IGF1, ITM2A,
CX3CL1, EDNRB, ALB, PPP2R1B, ACSM5, RBMS5, HBB,
CDKN1C, CCL21, NA, NA, HBB, MYBPC1, HOXA7, HPGD,
CAPNG6, CRYAB, PPARG, NDRG2, GHR, MYOC, CRABP1, NA,
GSN, FAM13A, ADH1B, ARL4A, LAMA2, IGF1, RUNX1T],
SOCS2, GSN, TCF7L2, EFHC1, RECK, NR4A2, MMRN1, CEL,
PDGFD, F3, MEG3, PDGFRA, DCLK1, AASS, LAMA2, KLF4,
MAOA, DCN, FMO2, AHNAK, NA, GRAMD2B, EDNRB,
PDZD2, AMIGO2, CITED1, CPE, CDO1, CIDEC, KCNJ8, NA,
SNX1, NA, SCN3B, DPT, NA, ITGA7, ZNF334, TFPI, ATP1A2,
ZNF711, TAC1, ACSM1, TCN1, MOCS1, MT1X, TP63, TFPI,
GIPC2, DCN, SGCE, NA, MEG3, NEDD4L, MEGF9, TP63, KLF4,
CDKN1C, PLAGL1, SLC25A37, SERPINAS5, TF, CORO2B,
MEOX2, COL14A1, GPX3, PCK1, JUN, RGS2, RRAD, GPM6A,
CPE, IGH, ARHGAP19, PELI2, CAV1, SLC6A14, PROS1, PPL,
SLC22A3, FAM149A, NAALAD2, F10, PYGB, FBLN5, CHST3,
MBD2, AGTR1, PDE2A, EGR1, BHMT2, MAOA, NOVAL,
PLSCR4, OMD, SH3BP2, MAF, GPM6A, CAV1, MPPED2,
ADAMTSS, PDGFRL, NA, AOC3, ITIH5, AK4, NA, NUDT2,
ADAMTS1, NFIB, LAMA2, NFIB, NA, CBX7, PDLIM4, IDA4,

TNN, ALDH1A1, HEY2, EHD2, GYG2, FAM149A, CAV2, TFPI,
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CRY2, BMP4, ZNF230, SETD4, NRG2, PLPP3, KLHL29, DCN,
TIE1, GPRASP1, LRRC17, KLF9, RND3, PLPP3, AK5, ANKZF1,
GRIK2, ACTG2, LRP1, TCF7L2, IGFBP1, NCALD, CAVIN2,
MFAPS, TFPI, HEY1, NFIB, SPATA6, PLA2R1, ZBTB20, SLPI,
ITM2A, AGTR1, PLEKHS1, ACACB, NFIB, CSRNP3, ADD3,
LAMAA4, XIST, NA, GRB10, CHL1, NFASC, SUN1, SORBS2,
KLF9, COX7A1, PIK3R1l, GPM®6B, DUSP6, CFH, TCF7L2,
PCDH9, DIXDC1, LOC389906, PTHLH, NR4A1, PPP1R15A,
TRIM29, ARID5B, HSD17B2, GNAL, ARHGAP6, FOXI1, ID4,
ALDH1A3, FBLN1, KLF3-AS1, NKTR, SNCAIP, MAFF, IL11RA,
PER2, ENPEP, HNRNPH1, P3H2, SORBS1, FAXDC2, SLIT3,
NA, NA, METTL7A, NA, 1-Mar, ANGPTL4, EHF, NID1, CCN1,
IGF1, NA, FOXO03, CAMSAP1, FZD7, MED6, SLC13A2,
TSC22D3, PARD3, FMO1, ADD3, JUN, FHL5, VSTM4, KLK11,
ALDH1L1, ADGRA2, SLCO1A2, ANK2, TENM1, FGF2,
NMNAT2, XIST, PRELP, TNMD, ASPH, DCX, SLC27A6, FBLN1,
EYA2, AOX1, FGF1, EMP1, PLAGL1, ABLIM1, NA, SGCD,
FBLN1, CTSG, SPTBN1, MAFK, Cl4orf132, NPR2, ASIC1,
PER2, NA, SOCS2, SPRY1, EREG, OLFM1, TRIM29, TNS1,
PDLIM4, SEMAG6A, KCNAB1, HGF, TRMT9B, CACNA1G,
PNISR, FAM13A, PTHLH, PDLIM3, ADD3, GPD1L, ENPEP,

CDKN1C, LAMBS3, IL33, MT1X, IRS1, FHOD3, PRSS12, NFIB,
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GYG2, MID1, ADAMTSS8, NA, PEG3, KIZ, PIK3C2G, IGLC],
ACTA2, CAPN3, TFAP2C, RASL10A, TMA4SF1, CSRP1,
RAPGEF3, AGFG2, ADGRL3, SOBP, EGFR, EFEMP1, NPR1,
TXNIP, SPARCL1, CAT, PIGR, MRC1, POU6F1, PLXDC1, NA,
SEMA3C, DKK3, TRIM33, RRP15, LIMCH1, CAV2, NA,
RCAN1, ABCF2, ATP1A2, RRAGD, GPER1, LRRC36, JUN,
ANPEP, TNS1, COL14A1, GULP1, OLFML2A, ADD3, PID1,
STEAP4, ENPP2, NA, SLC44A1, CA3, KLK5, RAI2, TAGLN,
SESN1, ATF3, CIRBP, COL4A3, ANKH, PART1, PHYHIP,
EWSR1, TRPC1, PALMD, GAS7, PIK3R1, DST, DCLK1, TRMO,
EBF2, GAS7, NA, PTPRB, KLK10, DPYSL2, CFAP69, TRIO,
MT1E, PIK3R1, MAP1LC3C, NA, SCN7A, NA, TMEMA47, DST,
AOX1, TGFBR2, DENND2A, EGR2, MPZL2, TCF7L2, KCNMA1,
TXNIP, FER, EXOC7, RGCC, LRP2, KLK7, KCNAB1, WLS,
MKRN2, FMOD, MEIS2, NES, PGF, EDN1, GOLGAS8A, NA,

ZBTB20, COL7A1, NRG2
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Table 2. Gene sets of each module and the top KEGG pathway terms

module gene Pathways in KEGG analysis
0 ADH1B, ALDH1Al1l, MAOB, | PI3K-Akt signaling pathway
MAOA, AOX1, ADH1C, | Focal adhesion
HSD17B6 Pathways in cancer
ECM-receptor interaction
Complement and coagulation
cascades
Malaria
PPAR signaling pathway
1 FABP4, ADIPOQ, HGF, LRP1, | PI3K-Akt signaling pathway
FGF2, PPARG, ALB, COL1A2, | Focal adhesion
PLIN1, IRS1, LEP, CAV1, FN1, | Proteoglycans in cancer
IGF1, LPL, CD36, DCN, LTF, | Rapl signaling pathway
PDGFRA, THBS1, EGFR, KIT, | Pathways in cancer
BGN, LOC102723407, LAMA2, | Ras signaling pathway
FGFR3, FGFR2, PIK3R1, | AMPK signaling pathway
MYH11
2 CXCL10, CXCL8, STAT1, JUN, | IL-17 signaling pathway
MMP9,  CXCL12, PTPRC,
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CX3CL1, EGR1, CCR5, LCK,
SYK, FOS, IRF7, CXCL2, FOSB,

IFIT1, ISG15, EGR2

Kaposi  sarcoma-associated
herpesvirus infection
Hepatitis B

Chemokine signaling pathway

Viral protein interaction with

cytokine and cytokine
receptor
Toll-like receptor signaling
pathway

TNF signaling pathway

CCNB1, KIF11, CDK1, BRCA1,
AURKA, EZH2, HIURP, RRM2,
BUB1B, KIF20A, CDCAS,
UBE2C, BIRC5, CDC20, TACC3,

TPX2, H2ACS8, H4C8

Cell cycle

Oocyte meiosis

p53 signaling pathway
Progesterone-mediated
oocyte maturation
Ubiquitin mediated
proteolysis

Viral carcinogenesis

lupus

Systemic

erythematosus
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