Research Article

Identification of key pathways and hub genes in breast cancer via a systems biology approach

Seyedeh Fatemeh Angoshtan, Zeinab Mori, Saeideh Naeimi, Elnaz Mehdizadeh Aghdam

DOI: 10.34172/PS.025.42698

To appear in: Pharmaceutical Science (https://ps.tbzmed.ac.ir/)

Received date: 23 May 2025

Revised date: 16 Sep 2025

Accepted date: 17 Sep 2025

Please cite this article as: Angoshtan SF, Mori Z, Naeimi S, Mehdizadeh Aghdam E. Identification of key pathways and hub genes in breast cancer via a systems biology approach. Pharm Sci. 2026. Doi: 10.34172/PS.025. 42698

This is a PDF file of a manuscript that have been accepted for publication. It is assigned to an issue after technical editing, formatting for publication and author proofing.

Identification of key pathways and hub genes in breast cancer via a systems biology approach

Seyedeh Fatemeh Angoshtan¹, Zeinab Mori^{2,3}, Saeideh Naeimi^{1*}, Elnaz Mehdizadeh Aghdam^{2,3*}

1 Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran

2 Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical

Sciences, Tabriz, Iran

3 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of

Medical Sciences, Tabriz, Iran

*Corresponding author(s). Saeideh Naeimi (Email: naeimis@semnan.ac.ir) and Elnaz Mehdizadeh

Aghdam (Email: emehdizadehaghdam@gmail.com)

†These authors contributed equally to this work.

Abstract

Background: Breast cancer (BC) remains the leading cause of cancer-related mortality among women globally. Despite significant advances in diagnosis and treatment, the molecular mechanisms driving breast tumorigenesis are not yet fully elucidated. This study aimed to identify key genes and signaling pathways associated with BC pathogenesis and prognosis through comprehensive bioinformatic analysis.

Method: In this study, gene expression data from the GSE124646 dataset were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified based on the criteria of $|\log_2|$ fold change |>1.5| and p-value |<0.01|. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were conducted. In addition, protein–protein interaction (PPI) network was constructed using STRING database and visualized using Cytoscape. Hub genes were identified based on network topology (degree ≥ 7 ; betweenness centrality between 0.005 and 1). Further validation was performed using the GEPIA web tool and Kaplan–Meier survival analysis.

Results: A total of 923 DEGs were identified, comprising 645 upregulated and 278 downregulated genes. Enrichment analysis revealed that these genes were predominantly involved in extracellular matrix (ECM) organization and localized within collagen-containing ECM components. Molecular function analysis indicated significant enrichment in glycosaminoglycan binding. KEGG pathway analysis highlighted the PI3K-Akt signaling pathway as a major pathway implicated in BC. 73 hub genes were identified and incorporated into the PPI network. Survival analysis demonstrated that elevated expression of several hub genes was significantly associated with poor prognosis. GEPIA analysis confirmed aberrant expression of these genes in BC tissues compared to normal controls.

Conclusion: These findings enhance our understanding of the molecular underpinnings of breast cancer and highlight potential diagnostic biomarkers and therapeutic targets. Furthermore, this study identifies a subset of previously under-characterized genes, which may contribute to refining the molecular taxonomy and treatment strategies of BC.

Keywords: Breast Neoplasm; Gene Expression; Bioinformatics; Survival Analysis; Biomarkers

1. Introduction

In the United States, breast cancer remains one of the most deadly cancers affecting women, second only to other major cancer types. However, breast cancer mortality has declined in recent years. 1 It is also the most common cancer in women. 2 According to the available global data from 2022, almost 20 million people were diagnosed with cancer (9.7 million people died of cancer globally), which includes 36 cancer types in 185 countries. Breast cancer was the most diagnosed cancer in women globally, with about 2.3 million new cases and 665,684 deaths worldwide. ³ BC can be classified into three major subtypes based on the presence or absence of molecular markers. Subtypes of breast cancer affect the optimal therapy for each patient in addition to the anatomic cancer stage and patient preferences. 4 BC is a multifactorial disease. 5 Sex, age, and blood group are known risk factors for breast cancer.⁶⁻⁹ Reproductive factors such as the age of menarche, the age of menopause, pregnancy, and the ovulatory menstrual cycle significantly affect the development of breast cancer.^{7,9} Genetic factors are correlated with breast cancer.¹⁰ Obesity, alcohol consumption, and smoking are associated with an increased risk of breast cancer.11-14

Early diagnosis and treatment of BC can lead to more successful treatments and a decrease in the mortality rate of patients with this disease. ¹⁵ BC can be diagnosed through mammography, ultrasound, magnetic resonance imaging (MRI), and high-end molecular bioimaging. Unfortunately, these techniques detect BC at a later stage. ^{16,17}

It is necessary to detect breast cancer at early stages to improve patient outcomes. Therefore, with the use of microarray technology to detect breast cancer, advancements may be achieved. 18

Recent studies have shown that gene expression analysis may improve breast cancer prognosis

and treatment.¹⁸⁻²¹ DNA and protein analysis can be performed with microarrays, which are powerful tools in biomedical research and are based on probe molecules attached to a planar surface in a miniaturized grid pattern.²²

For over two decades, the research community has analyzed gene expression in human cancers, resulting in a vast amount of data. The development of DNA microarray technology in the late 1990s revolutionized how gene expression was analyzed.^{23,24} The development of additional gene expression profiling technologies, such as RNA sequencing (RNA-seq), has shed light on the specific genes that are differentially expressed, enabling a deeper understanding of novel transcripts and providing a far more precise measurement of the levels of transcripts and their isoforms.^{25,26}

Systems biology is about increasing the awareness and understanding of biology and related fields by joining the rules of engineering, physics, and math to the complexity of living systems through a continuous process to illustrate the interrelated processes occurring within a cell. This integration elucidates how environmental inputs and network alterations resulting from genomic abnormalities in patient tumors influence cellular behavior and ultimately affect patient outcomes.²⁷ Systems biology represents an approach that emphasizes a global perspective by analyzing the entire network of interactions rather than focusing on individual proteins, genes, or enzymes. This field has demonstrated that cellular proteins do not function in isolation; instead, these genes and proteins are interconnected, forming a complex molecular network that collaborates to fulfill specific functions.²⁸

The objective of our study was to discover novel biomarkers or hub genes from DEGs via an integrated analysis of microarray data. We employed a bioinformatics approach to identify the hub genes and differentially expressed genes between breast tumors and normal tissues. The PPI network was created using the STRING database with the Cytoscape software for visualization.

Moreover, KEGG analysis and gene ontology (GO) utilising the Enricher web tool were performed on the DEGs to gain relevant insights. Additionally, survival analysis and heatmaps were generated. Through the analysis of gene expression levels and biological pathways, we studied the genetic sources of faulty pathways in cancerous cells to identify potential targets for cancer treatment. A novel discovery of our findings was a group of underrepresented genes that are not widely studied in the breast cancer literature, adding another layer of awareness and suggesting new molecular candidates beyond the standard biomarkers.

2. Materials and methods

2. 1 Data collection

The gene expression data of 10 BC samples and 10 normal samples (GSE124646) from the GPL96 platform (Affymetrix Human Genome U133A Array) were obtained from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Figure 1 shows a summary of the steps accomplished.

2. 2 Data preprocessing and identification of differentially expressed genes (DEGs)

The raw gene expression data were first processed using the MAS5 method, implemented through the Affy package in R. Boxplots and histograms were generated to visualize the identified DEGs. We then analyzed DEGs between BC and normal samples via significance analysis via the

microarray method with the limma package. The filtering conditions were as follows: |log2-fold change| >1.5 and P <0.01. A heatmap was plotted for the samples and DEGs via the heatmap package in R software.

2. 3 Construction of the protein-protein interaction network

For protein-level interactions, we used the STRING database (http://string-db.org/), which allows you to map protein-protein interactions. In the STRING analysis, we only used interaction scores≥ 0.9, which are considered reliable confidence scores and used to build a network. ²⁹ To visualize the PPI network and identify core genes, Cytoscape software (version 3.6.0) was utilized. With the threshold of a degree≥7, 0.005≤betweenness≤1 hub genes were found. The thresholds were chosen based on studies in the field of network biology, as well as studies that showed that highly connected and central nodes are biologically important nodes in protein-protein interaction (PPI) networks. Degree of network indicates how many interactions a node has directly, and the degree threshold was used to show several biologically relevant hub genes by utilizing strong connectivity. ^{30,31} Betweenness centrality indicates how far a node lies on the shortest path between other nodes. Betweenness centrality indicates whether a node is bridging bottlenecks in the network. ³²⁻³⁴ To confirm the choice of hub genes, functional enrichment, survival analysis, and expression profiling were performed. All of these indicate the resulting genes are relevant from a biological perspective and as prognostic factors. ³⁵

The candidate modules were detected via Gephi. Gephi is software for graph visualization, network analysis, and module development.³⁶ By running the Fruchterman-Reingold Algorithm, we create a force-directed layout algorithm.³⁷ Several aspects of the hub gene network, including

the eigenvector, network diameter, closeness, and betweenness, were examined in Gephi.

Additionally, Gephi identified the hub gene clusters and candidate modules.

2. 4 Enrichment analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses of the DEGs and hub genes were performed via Enrichr (https://maayanlab.cloud/Enrichr/). Enrichr contains a wide range of gene sets and biological knowledge for further biological discoveries. Annotations of the cellular components, biological processes, and molecular functions of the DEGs were determined via Gene Ontology (GO) enrichment analysis. The R cluster profile package was used to explore the results of the GO enrichment analysis. Additionally, GO enrichment plots were drawn via a bioinformatics tool (https://www.bioinformatics.com.cn/). Gene Ontology introduced the concept of systematically linking a collection of genes to a functional biological term. ** KEGG is also used to understand high-level and genomic functions. It consists of genomic, chemical, and network information.** ** Additionally to the concept of systematically linking a collection of genes to a functional biological term.** A medical terms are the concept of systematically linking a collection of genes to a functional biological term.** A medical terms are the concept of systematically linking a collection of genes to a functional biological terms.** A medical terms are the concept of systematically linking a collection of genes to a functional biological terms.** A medical terms are the concept of systematically linking a collection of genes to a functional biological terms.** A medical terms are the concept of systematical terms are the concept of system

2. 5 Survival analysis of the hub genes

The Kaplan–Meier plotter database (http://kmplot.com/analysis/) was used to perform the survival analysis. The Kaplan–Meier plotter is a website tool that can be utilized to assess the impact of numerous genes on survival based on the EGA, TCGA, and GEO databases. In order to evaluate how the identified hub genes could impact patient outcomes, we applied Kaplan–Meier analysis, a statistical method often used to evaluate survival probabilities over time (P < 0.05 was considered to indicate statistical significance).

2. 6 Expression analysis of the hub genes

Additionally, the GEPIA tool was used to validate the role of key genes in BC progression as well as their expression levels in normal breast and BC samples to predict the prognostic value of the hub genes. GEPIA is an online tool that can be employed for survival, correlation, gene expression, and dimensionality reduction analyses in various cancers and normal tissues and contains 9,736 tumors (1085 breast cancer samples) and 8,587 normal samples from the TCGA and GTEx projects. ⁴⁰

3. Results

3. 1 Identification of differentially expressed genes (DEGs)

GSE124646 was selected. The data of 10 breast cancer samples and 10 normal breast samples, 100% cancer tissue, and 100% normal tissue were normalized with the MAS5 algorithm in the Affy package in R statistical software. A total of 22283 genes were identified. After filtering with criteria of |log2FC| greater than 1.5 and p-value < 0.01, 923 differentially expressed genes were identified. Of these, 645 genes had increased expression levels and 278 genes were downregulated.(Figure 2) (Table 1).

3. 2 PPI (Protein-Protein Interaction) Network and Module Analysis

The PPI network of DEGs was constructed with 307 nodes and 882 edges based on the STRING database, with an interaction score of 0.9 as the threshold. The network was analyzed via Cytoscape. Degree≥7 and 0.005≤betweenness≤1 were set as the cutoff criteria. A total of 73 genes were selected as hub genes. Among these hub genes, ALB, ALDH1A1, EGFR, BRCA1, EZH2, FN1, JUN, CXCL8, MMP9, FOS, CDK1, EGR1, STAT1, PTPRC, and IGF1 had relatively high betweenness centralities, and ALB, EGFR, FN1, JUN, MMP9, CXCL8, IGF1, STAT1, PTPRC, FOS, FGF2, CXCL12, PDGFRA, EZH2, and BRCA1 were among the top 15 genes with high degrees of connectivity. By using Gephi, the hub genes were divided into 4 significant modules, as presented in Figure 3.

3. 3 Enrichment analysis

Once again, our hub gene network was constructed in string, and by using Gephi, modules were constructed. Four out of five modules were significant, as shown in Figure 3 and Table 2. To better

understand the biological functions of the DEGs and hub genes, GO and KEGG enrichment analyses were conducted. Highly expressed pathways and genes of each cluster were also identified and displayed. In the biological process analysis, the DEGs were involved mainly in in extracellular matrix and structural organizations, and positive regulation of protein kinase B signaling. In the cellular component analysis, the DEGs were enriched mainly in the collagencontaining extracellular matrix, basement membrane, and endoplasmic reticulum lumen. According to the results of the molecular function analysis, the DEGs were enriched mainly in glycosaminoglycan binding, extracellular matrix structural constituent, and heparin binding (Figure 4). The biological process analysis indicated that these hub genes are likely to be vital components of specific functions such as the positive regulation of intracellular signal transduction. In the cellular component analysis, the hub genes were enriched mainly in spindle regulation. In the molecular function analysis, the hub genes were enriched mainly in integrin binding. The statistical significance of the GO term enrichment analysis is shown in Supplementary 1 and Figure 5. KEGG analysis revealed that the DEGs were enriched in the PI3K-Akt signaling pathway, focal adhesion, pathways in cancer, ECM-receptor interaction, and complement and coagulation cascades. The hub genes were enriched in pathways related to cancer, the PI3K-Akt signaling pathway, focal adhesion, proteoglycans in cancer, and pathways related to cancer. In the KEGG enrichment figure, the -log₁₀(p-value) scale represents statistical significance for each pathway, with higher numbers indicating greater enrichment (Figure 6, Supplementary 2)

3. 4 Hub gene validation: Survival analysis and gene expression profiling of the hub genes

Kaplan–Meier curves were plotted for the hub genes. The KM plot showed that the expression of most of the hub genes significantly differed between the high- and low-expression groups (Supplementary 3). These results indicate that 78.08% of the hub genes have prognostic significance for breast cancer patients. Hazard ratios (HR) and log-rank p-values for all hub genes assessed, which reflect the results of our survival analysis, are presented in Supplementary 4. GEPIA was used to analyze the hub genes and compare their overall expression levels with those of normal tissues. The results indicated that the hub genes were abnormally expressed in breast cancer tissue compared with normal breast tissue (Figure 7).

4. Discussion

Breast cancer is a biologically diverse disease, characterized by considerable heterogeneity in both its molecular characteristics and clinical behavior, driven by DNA alterations resulting in the activation of oncogenes or the suppression of tumor suppressor genes. The development of array technology allows surveys of gene expression, and with the aim of bioinformatics tools, a better understanding of expression profiles has led to new approaches. Using these technologies enables researchers to define the functions of newly identified genes, delineate the pathway they're part of, study patterns of gene variation, and identify possible therapeutic targets. 41,42 A better understanding of molecular mechanisms is necessary to identify target genes and novel therapeutic strategies. 43,44

In this study, 923 (278 downregulated and 645 upregulated) genes were differentially expressed. From a constructed protein-protein interaction network, 73 hub genes were selected. These 73 hub genes were differentially expressed between breast cancer and normal tissues. KEGG

pathway enrichment analysis revealed that the differentially expressed genes and hub genes were particularly enriched in three pathways: pathways associated with cancer, the PI3K–Akt signaling pathway, and focal adhesion.

Hub genes primarily activate pathways involving PI3K-Akt signaling and focal adhesion, both of which are associated with the motility, growth, and survival of cancer cells. The phosphatidylinositol 3-kinase (PI3K) pathway coordinates intracellular responses such as survival, cell growth, differentiation, cellular metabolism, and cytoskeletal reorganization to extracellular stimulators. This pathway occurs in many human cancers. ⁴⁵ The PI3K pathway is a novel pathway for therapeutic targeting. Many drugs that target various components of this pathway are now in clinical trials. ⁴⁶ Focal adhesions (FAs) are multiprotein structures that connect the cytoskeleton of a cell to the extracellular matrix through integrins. Cellular adhesion is an essential process involved in motility. 47 Changes in the expression of these molecules can induce cell death or change the size of individual cell-matrix interactions.⁴⁸ The targeting of FA proteins can lead to the sensitization of cancer cells to treatment.⁴⁹ Enrichment analysis also showed that module 3 genes work in a role involving cell cycle regulation, a therapeutic target that is established in breast cancer. For instance, CDK1, a hub gene from module 3, coordinates cell division in mammalian cells by regulating the G1/S transition by coupling Cyclin D1 with extracellular signals.⁵⁰ In several cancers, cell cycle progression is correlated with the dysregulation of CDKs (cyclin dependent kinases), and this mechanism contributes to abnormal cell proliferation.⁵¹ Selective CDK inhibitors against CDK4 and CDK6 have been approved by the FDA for patients with metastatic hormone receptor-positive breast cancer, while earlier-generation pan-CDK inhibitors, those that inhibit multiple cyclin-dependent kinases, have not been able to gain

approval for clinical use. First-generation pan-CDKIs, such as Flavopiridol and Rocovitine, and second-generation CDKIs, such as Dinaciclib and Roniciclib, are some inhibitors that are under development for targeting cancer. ⁵² Our analysis revealed that CCNB1, CDC20 BUB1B are module 3 genes that affects the cell cycle pathway in breast cancer tissues. Recent studies have also shown that high expression of CCNB1, ⁵³ CDC20, ⁵⁴ BUB1B ⁵⁵ is associated with poor prognosis in patients with breast cancer. Module two genes promote mainly the IL-17 signaling pathway. The pro-inflammatory cytokine interleukin-17 is important in promoting tumor proliferation and metastasis and is significantly correlated with poor prognosis in breast cancer patients. ⁵⁶ The IL-17 superfamily of T-cell-derived cytokines consists of six ligands (IL-17A/IL-17, IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and IL-17F) and five receptors (IL-17RA, IL-17RB/IL-25R, IL-17RC, IL-17RD/SEF and IL-17RE). ⁵⁷ In breast cancer, tumor-infiltrating lymphocytes (TILs) produce mainly IL-17. ⁵⁸ Recent studies in mice have found therapeutic value in IL-17A, IL-17B, and IL-17RB inhibitors as targeted therapies for breast cancer. Antitumor activities are enhanced with the use of IL-17E with cisplatin or paclitaxel. ⁵⁹

By constructing a PPI network, ALB, EGFR, EZH2, FN1, JUN, CXCL8, MMP9, FOS, STAT1, and PTPRC were found to have elevated degrees of connectivity and betweenness centralities across the network. EGFR is also a tyrosine kinase receptor that normally functions to promote cell proliferation. However, its overexpression leads to tumorigenesis and aggressive growth, and several anti-EGFR therapies are in development. EZH2 is a transcriptional repressor that has been documented as a biomarker in advanced breast cancer, and we know that there are several inhibitors in development. High levels of EZH2 transcript and protein, when expressed in immortalized human mammary epithelial cell lines, enable those cells to grow independently and

are linked with invasive carcinoma as well as breast cancer metastases. ^{63,64} A recent study indicated that when EZH2 was inhibited in inflammatory BC cells, it inhibited tumor growth. ⁶⁵ FN1 (fibronectin 1) gene targets a glycoprotein that has poor prognosis for many cancers; inhibition of FN1 has inhibited proliferation and metastasis in models of breast cancer. ⁶⁶⁻⁷⁰ The JUN proto-oncogene enhances angiogenesis and proliferation, c-JUN protein also regulates glutaminase and its sensitivity to therapy. ⁷¹⁻⁷³ C-X-C motif chemokine ligand 8 (CXCL8, interleukin 8) is known to enhance cell proliferation and inhibit apoptosis in different cancers, including breast cancer. ^{74,75} When CXCL8 is overexpressed, it can promote tumorigenesis and metastasis and should be considered a potential biomarker of metastasis for a variety of cancers, including BC. ⁷⁶⁻⁷⁹ Matrix metalloproteinase 9 (MMP-9) has roles in the remodeling and invasion of the extracellular matrix, which is elevated in BC. In breast cancer, there are various biosensors currently improving the detection of MMP-9. ^{80,81} Additionally, FOS family protein dysregulation, along with the JUN family proteins in AP-1 (transcriptional) complexes, is associated with cellular proliferation and breast cancer development. ^{82,83}

Besides the core hub genes EGFR, EZH2, FN1, CXCL8, MMP9, JUN, and FOS, STAT1, PTPRC, and especially ALB have received less description within breast cancer literature. ALB encodes the most abundant protein in extracellular fluids.⁸⁴ Albumin is responsible for maintaining colloid osmotic pressure and acts as a carrier for many endogenous and exogenous compounds. Human serum albumin (HAS) is a distinguished biomarker for many diseases, including cancer, and albumin is clinically used for the treatment of various diseases.⁸⁵ Many studies have shown that hypoalbuminemia is associated with many cancers because of malnutrition and systemic inflammatory responses.⁸⁶⁻⁸⁸ In a previous study, ALB was also a hub gene with the highest degree

in Wilms tumor,⁸⁹ whereas upregulation of ALB could be associated with colorectal cancer liver metastasis and hepatocellular carcinoma. Many studies have shown that lower levels of serum ALB have been associated with poor survival in many cancers for decades. However, few studies have investigated the prognostic value of ALB in patients with breast cancer, and few studies have specifically focused on the ALB expression level in patients with BC.⁹⁰⁻⁹³

Our analysis revealed that the signal transducer and activator of transcription 1 (STAT1), an essential component of interferon (IFN) signaling, is underexpressed. Stat1 can act as an oncogene or an antioncogene. The decision as to whether STAT1 is oncogenic or antioncogenic depends on the specific genetic background and type of cancer. 94 Previous studies reported conflicting findings about the role of STAT1 in the primary tumor development and growth of breast cancer. Stat1 has been proposed to serve a suppressive role in tumor development and may even help in suppressing cancer development. 95-98 Although one study found that increased STAT1 activation is associated with more favorable outcomes for breast cancer patients, 99 two other studies found that increased STAT1 mRNA is associated with worse survival. This difference underscores the context-dependent and contradictive role of STAT1 in breast cancer progression. ^{100,101} However, another study revealed that the overexpression of Stat1 can play an oncogenic role in breast tumor growth. 102 In addition, anthracyclines, such as doxorubicin, are anticancer treatments in the clinic that can increase the activation of STAT1 in breast cancer cells. 103,104 Protein tyrosine phosphatases (PTPs) have a specific subtype known as receptor-type PTPs (PTPRs).¹⁰⁵ The protein tyrosine phosphatase receptor type C (PTPRC) gene encodes PTPRC, also known as the CD45 antigen or leukocyte common antigen (LCA), which is a transmembrane glycoprotein and a vital regulatory factor that is involved in the modulation of antigen receptor

signaling pathways in both T lymphocytes and B lymphocytes.^{106,107} PTPRC is amplified in 11.2% (108 of 962) of breast cancer samples, with the highest proportion of copy number amplifications among the PTPR genes reported in the TCGA database for all cancers.¹⁰⁵ A study showed that lower expression of PTPRC caused increased resistance to paclitaxel in triple-negative breast cancer cell lines. ¹⁰⁸ Little research has been conducted on PTPRC expression in BC; however, our analysis revealed that this gene was under-expressed. These results demonstrated that the core genes might be key players in the progression of BC.

Finally, survival data analyses demonstrated a robust relationship between the expression levels of several hub genes and clinical outcome in breast cancer patients. Kinesin family member 11 (KIF11), a motor protein critical for spindle dynamics, showed poor OS (HR=1.54, log-rank P < 1E-16), 109 is associated with poor prognosis. Similarly, BRCA1 alterations in its expression were related to poor prognosis in BC patients (HR=1.41 (1.28–1.56), log-rank P= 2.5E-11). 110

Overexpression of AURKA, a driver of tumorigenesis, was associated with poor OS (HR=1.89, log-rank P < 1E-16), supporting its candidacy for targeted therapies. CCNB1, a cell cycle regulator, also had prognostic value (HR=1.53, log-rank P=3.8e-08). $^{114-117}$

Further analysis revealed that RRM2 (HR=1.83, log-rank P < 1e-16), 118,119 cell division cycle 20 (CDC20) (HR=1.9 (1.71–2.11), log-rank < 1e-16), $^{120-123}$ CDC2 (CDK1) (HR=1.68 (1.52–1.68), log-rank P < 1E-16), 124,125 were also associated with poor OS in BC patients. Lastly, SSK (also known as BUB1B) gene expression is crucial for the production of BubR1, a key protein that mediates spindle checkpoint activation. 126 Increased expression of BUB1B was associated with worse OS in BC patients. 127,128

By studying 73 hub genes associated with breast cancer, this study not only validated known biomarkers, but also augmented methodological integrity by validating previous experimental and review based results. Interestingly, a gene subset including AOX1, LOC102723407, HSD17B6, ADH1C, ADH1B, EGR2, LTF, LAMA2, H2AC8, and H4C8 was not well researched to date in breast cancer. While these were discovered through integrative enrichment and survival analyses, which demonstrate an added element of novelty, the ability to present such genes can have implications for future avenues of research as noteworthy candidates. These genes may provide possible therapeutic significance and unexplored mechanistic potential. In general, these results further the biology of breast cancer and provide new molecular targets.

AOX1 is under expression in some cancers, and is proposed to influence chemoresistance and redox homeostasis. ¹²⁹⁻¹³² The LOC102723407 gene is expressed at significant levels in some cancers, though research is limited. ¹³³ HSD17B6 regulates steroid hormone metabolism, and has been associated with lung, prostate, and hepatocellular cancer. ^{134,135} Levels of ADH1B and ADH1C, which are the main enzymes involved in alcohol and retinol metabolism, were associated with tumor aggression and metabolic adaptation, particularly in triple-negative breast cancer. ^{136,137} Recent studies showed that EGR2 emerged as a central transcription factor that was induced in tumor-infiltrating CD8+ T cells, showing a role in T-cell exhaustion and tumor immune evasion, particularly in HER2-enriched tumor microenvironments. ¹³⁸ LTF encodes lactotransferrin, one of the tumour-suppressing proteins, and may serve as a prognostic marker in several cancers, mediating immune effects. ^{139,140} LAMA2 encodes an important structural component of the basement membrane and is a tumor suppressor in several cancers. Its reduced expression through promoter hypermethylation is associated with malignant traits such as

invasion and metastasis through MAPK and PI3K/AKT pathway. 141,142 The histone cluster variants H2AC8 and H4C8 exhibit atypical expression in high-grade tumors, suggesting they are involved in chromatin instability and epigenetic dysregulation. 143-145

There were several limitations in this study, including the following. First, only one dataset was observed in this study. Compared with studies with multiple microarray datasets, these results may be less reliable. Second, when the DEGs were analyzed, several factors, such as age, race, tumor stage, and patient classification, were not considered. Third, subtype-specific survival analysis was not undertaken which diminishes the clinical relevance of the findings of this research due to the heterogeneity of breast cancer. Future studies should incorporate subtype-stratified analyses to better capture prognostic differences across molecular classifications. This would enhance the translational value of the research and support more personalized treatment strategies.

Conclusion

In summary, bioinformatics analysis revealed 73 hub genes that were significantly enriched in important signaling pathways, such as PI3K-Akt and focal adhesion, among others. The study presented survival analysis and demonstrated that more than 78.08% of hub genes exhibited expression patterns that correlated with poor prognosis in BC patients. Together, these results elucidated the molecular basis for breast cancer progression, and these genes may serve as targets for biomarker identification and targeted therapy. Although the results shown above require verification via in vivo and in vitro analyses, our study provides a new direction for further studies on breast cancer.

Declarations

Ethics approval and consent to participate

"Not applicable"

Consent for publication

"Not applicable"

Availability of data and materials

The GSE124646 dataset supporting the conclusions of this article is available on the GEO website (https://www.ncbi.nlm.nih.gov/gds).

Competing interests

The authors declare that they have no competing interests

Funding

"Not applicable"

Author Contributions (CRediT):

S.F.A: Conceptualization, Methodology, Formal analysis, Writing – Original Draft. **Z.M:** data analysis, Writing – Review & Editing. **S.N:** Conceptualization, Supervision, Writing – Review & Editing, Validation. **E.M.A:** Conceptualization, Supervision, Validation, Writing – Review & Editing. All authors read and approved the final manuscript.

Acknowledgments

Not applicable

References

- 1. Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, et al. Breast cancer statistics, 2022. *CA Cancer J Clin* 2022;72(6):524-41. doi: 10.3322/caac.21754
- 2. Wilkinson L, Gathani T. Understanding breast cancer as a global health concern. *Br J Radiol* 2022;95(1130):20211033. doi: 10.1259/bjr.20211033
- 3. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 2024;74(3):229-63. doi: 10.3322/caac.21834
- 4. Waks AG, Winer EP. Breast cancer treatment: A review. Jama 2019;321(3):288-300.
- 5. Zendehdel M, Niakan B, Keshtkar A, Rafiei E, Salamat F. Subtypes of benign breast disease as a risk factor for breast cancer: A systematic review and meta-analysis protocol. *Iran J Med Sci* 2018;43(1):1.
- 6. Giordano SH, Buzdar AU, Hortobagyi GN. Breast cancer in men. *Ann Intern Med* 2002;137(8):678-87.
- 7. Thakur P, Seam RK, Gupta MK, Gupta M, Sharma M, Fotedar V. Breast cancer risk factor evaluation in a western himalayan state: A case—control study and comparison with the western world. *South Asian J Cancer* 2017;6(03):106-9.
- 8. Meo SA, Suraya F, Jamil B, Al Rouq F, Meo AS, Sattar K, et al. Association of abo and rh blood groups with breast cancer. *Saudi J Biol Sci* 2017;24(7):1609-13.
- 9. Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. *Breast Cancer (Dove Med Press)* 2019;11:151.
- 10. Cobain EF, Milliron KJ, Merajver SD, editors. Updates on breast cancer genetics: Clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. *Semin Oncol*; 2016: Elsevier.
- 11. Bravi F, Decarli A, Russo AG. Risk factors for breast cancer in a cohort of mammographic screening program: A nested case—control study within the fr icam study. *Cancer Med* 2018;7(5):2145-52.
- 12. Kerlikowske K, Gard CC, Tice JA, Ziv E, Cummings SR, Miglioretti DL. Risk factors that increase risk of estrogen receptor—positive and—negative breast cancer. *JJNCI J Natl Cancer Inst*2017;109(5).
- 13. Miller E, Wilson C, Chapman J, Flight I, Nguyen A-M, Fletcher C, et al. Connecting the dots between breast cancer, obesity and alcohol consumption in middle-aged women: Ecological and case control studies. *BMC Public Health* 2018;18(1):1-14.
- 14. Luo J, Margolis KL, Wactawski-Wende J, Horn K, Messina C, Stefanick ML, et al. Association of active and passive smoking with risk of breast cancer among postmenopausal women: A prospective cohort study. *Bmj* 2011;342.
- 15. Hamed G, Marey M, Amin S, Tolba M. Deep learning in breast cancer detection and classification. 2020. p. 322-33.
- 16. Jaglan P, Dass R, Duhan M. Breast cancer detection techniques: Issues and challenges. *J Inst Eng India Ser B* 2019;100. doi: 10.1007/s40031-019-00391-2
- 17. Zubair M, Wang S, Ali N. Advanced approaches to breast cancer classification and diagnosis. *Front Pharmacol* 2020;11:632079. doi: 10.3389/fphar.2020.632079

- 18. Latha NR, Rajan A, Nadhan R, Achyutuni S, Sengodan SK, Hemalatha SK, et al. Gene expression signatures: A tool for analysis of breast cancer prognosis and therapy. *Crit Rev Oncol Hematol* 2020;151:102964. doi: https://doi.org/10.1016/j.critrevonc.2020.102964
- 19. Bao T, Davidson NE. Gene expression profiling of breast cancer. *Adv Surg* 2008;42:249-60. doi: 10.1016/j.yasu.2008.03.002
- 20. Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early stage breast cancer. *Nat Rev Clin Oncol* 2017;14(10):595-610. doi: 10.1038/nrclinonc.2017.74
- 21. Joe S, Nam H. Prognostic factor analysis for breast cancer using gene expression profiles. *BMC Med Inform Decis Mak* 2016;16(1):56. doi: 10.1186/s12911-016-0292-5
- 22. Brittain WJ, Brandsetter T, Prucker O, Rühe Jr. The surface science of microarray generation—a critical inventory. *ACS Appl Mater Interfaces* 2019;11(43):39397-409.
- 23. Alberts B JA, Lewis J, et al. Molecular Biology of the Cell. 4th edition. Molecular biology of the cell, 4th edition2002.
- 24. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* 1995;270(5235):467-70.
- 25. Corchete LA, Rojas EA, Alonso-López D, De Las Rivas J, Gutiérrez NC, Burguillo FJ. Systematic comparison and assessment of rna-seq procedures for gene expression quantitative analysis. *Sci Rep* 2020;10(1):19737. doi: 10.1038/s41598-020-76881-x
- 26. Wang Z, Gerstein M, Snyder M. Rna-seq: A revolutionary tool for transcriptomics. *Nat Rev Genet* 2009;10(1):57-63. doi: 10.1038/nrg2484
- 27. Gonzalez-Angulo AM, Hennessy BT, Mills GB. Future of personalized medicine in oncology: A systems biology approach. *Journal of clinical oncology* 2010;28(16):2777-83.
- 28. Khan A, Rehman Z, Hashmi HF, Khan AA, Junaid M, Sayaf AM, et al. An integrated systems biology and network-based approaches to identify novel biomarkers in breast cancer cell lines using gene expression data. *Interdiscip Sci* 2020;12(2):155-68. doi: 10.1007/s12539-020-00360-0 29. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. String v10: Protein–protein interaction networks, integrated over the tree of life. *Nucleic Acids Res* 2014;43(D1):D447-D52. doi: 10.1093/nar/gku1003
- 30. Abdolahi F, Shahraki A, Sheervalilou R, Mortazavi SS. Identification of differentially expressed genes associated with the pathogenesis of gastric cancer by bioinformatics analysis. *BMC Med Genomics* 2023;16(1):311. doi: 10.1186/s12920-023-01720-7
- 31. Nguyen TB, Do DN, Nguyen-Thanh T, Tatipamula VB, Nguyen HT. Identification of five hub genes as key prognostic biomarkers in liver cancer via integrated bioinformatics analysis. *Biology* 2021;10(10):957.
- 32. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics. *PLOS Comput Biol* 2007;3(4):e59. doi: 10.1371/journal.pcbi.0030059
- 33. Nithya C, Kiran M, Nagarajaram HA. Hubs and bottlenecks in protein-protein interaction networks. In: Mandal S, editor. Reverse engineering of regulatory networks. New York, NY: Springer US; 2024. p. 227-48.
- 34. Pang E, Hao Y, Sun Y, Lin K. Differential variation patterns between hubs and bottlenecks in human protein-protein interaction networks. *BMC Evol Biol* 2016;16(1):260. doi: 10.1186/s12862-016-0840-8

- 35. Tian A, Pu K, Li B, Li M, Liu X, Gao L, et al. Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. *Hepatol Res* 2019;49(10):1195-206.
- 36. Bastian M, Heymann S, Jacomy M, editors. Gephi: An open source software for exploring and manipulating networks. Proceedings of the international AAAI conference on web and social media; 2009.
- 37. Jacomy M, Venturini T, Heymann S, Bastian M. Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. *PloS One* 2014;9(6):e98679.
- 38. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Res* 2016;44(W1):W90-W7. doi: 10.1093/nar/gkw377
- 39. Tanabe M, Kanehisa M. Using the kegg database resource. *Curr Protoc Bioinformatics* 2012;Chapter 1:1.12.1-1..43. doi: 10.1002/0471250953.bi0112s38
- 40. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. Gepia: A web server for cancer and normal gene expression profiling and interactive analyses. *Nucleic Acids Res* 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247
- 41. Kurella M, Hsiao L-L, Yoshida T, Randall JD, Chow G, Sarang SS, et al. DNA microarray analysis of complex biologic processes. *J Am Soc Nephrol* 2001;12(5).
- 42. Provenzano E, Ulaner GA, Chin S-F. Molecular classification of breast cancer. *PET Clin* 2018;13(3):325-38. doi: https://doi.org/10.1016/j.cpet.2018.02.004
- 43. Tsimberidou A-M. Targeted therapy in cancer. *Cancer chemother and Pharmacol* 2015;76:1113-32.
- 44. Zheng T, Wang A, Hu D, Wang Y. Molecular mechanisms of breast cancer metastasis by gene expression profile analysis. *Mol Med Rep* 2017;16(4):4671-7. doi: 10.3892/mmr.2017.7157
- 45. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between pi3k/akt signalling pathway and cancer. *Gene* 2019;698:120-8.
- 46. Spangle JM, Roberts TM, Zhao JJ. The emerging role of pi3k/akt-mediated epigenetic regulation in cancer. *Biochim Biophys Acta Rev Cancer* 2017;1868(1):123-31.
- 47. Haase K, Al-Rekabi Z, Pelling AE. Chapter five mechanical cues direct focal adhesion dynamics. In: Engler AJ, Kumar S, editors. Progress in molecular biology and translational science: Academic Press; 2014. p. 103-34.
- 48. Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. *Oncotarget* 2017;8(29):48471-87. doi: 10.18632/oncotarget.17265
- 49. Eke I, Cordes N, editors. Focal adhesion signaling and therapy resistance in cancer. Seminars in cancer biology; 2015: Elsevier.
- 50. Caldon CE, Daly RJ, Sutherland RL, Musgrove EA. Cell cycle control in breast cancer cells. *J cell Biochem* 2006;97(2):261-74.
- 51. Izadi S, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Mohammadi H, et al. Cdk1 in breast cancer: Implications for theranostic potential. *AntiCancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents)* 2020;20(7):758-67.
- 52. Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, et al. Cdk inhibitors in cancer therapy, an overview of recent development. *Am J Cancer Res* 2021;11(5):1913-35.

- 53. Ding K, Li W, Zou Z, Zou X, Wang C. Ccnb1 is a prognostic biomarker for er+ breast cancer. *Med Hypotheses* 2014;83(3):359-64. doi: https://doi.org/10.1016/j.mehy.2014.06.013
- 54. Jiang J, Jedinak A, Sliva D. Ganodermanontriol (gdnt) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of cdc20 and upa. *Biochem Biophys Res Commun* 2011;415(2):325-9. doi: 10.1016/j.bbrc.2011.10.055
- 55. Han JY, Han YK, Park G-Y, Kim SD, Geun Lee C. Bub1 is required for maintaining cancer stem cells in breast cancer cell lines. *Sci Rep* 2015;5(1):15993. doi: 10.1038/srep15993
- 56. Amara S, Majors C, Roy B, Hill S, Rose KL, Myles EL, et al. Critical role of sik3 in mediating high salt and il-17 synergy leading to breast cancer cell proliferation. *PloS One* 2017;12(6):e0180097.
- 57. Liu Y, Shao Z, Shangguan G, Bie Q, Zhang B. Biological properties and the role of il-25 in disease pathogenesis. *J Immunol Res* 2018;2018.
- 59. Song X, Wei C, Li X. The potential role and status of il-17 family cytokines in breast cancer. *Int Immunopharmacol* 2021;95:107544. doi: https://doi.org/10.1016/j.intimp.2021.107544
- 60. Nicholson RI, Gee JMW, Harper ME. Egfr and cancer prognosis. *Eur J Cancer* 2001;37:9-15. doi: https://doi.org/10.1016/S0959-8049(01)00231-3
- 61. Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, et al. Molecular targeting therapy against egfr family in breast cancer: Progress and future potentials. *Cancers* 2019;11(12):1826.
- 62. Duan R, Du W, Guo W. Ezh2: A novel target for cancer treatment. *J Hematol Oncol* 2020;13(1):104. doi: 10.1186/s13045-020-00937-8
- 63. Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. Ezh2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. *Proc Natl Acad Sci* 2003;100(20):11606-11. doi: doi:10.1073/pnas.1933744100
- 64. Adibfar S, Elveny M, Kashikova HS, Mikhailova MV, Farhangnia P, Vakili-Samiani S, et al. The molecular mechanisms and therapeutic potential of ezh2 in breast cancer. *Life Sci* 2021;286:120047. doi: https://doi.org/10.1016/j.lfs.2021.120047
- 65. Mu Z, Li H, Fernandez SV, Alpaugh KR, Zhang R, Cristofanilli M. Ezh2 knockdown suppresses the growth and invasion of human inflammatory breast cancer cells. *J Exp Clin Cancer Res* 2013;32(1):70. doi: 10.1186/1756-9966-32-70
- 66. Ashok G, Miryala SK, Saju MT, Anbarasu A, Ramaiah S. Fn1 encoding fibronectin as a pivotal signaling gene for therapeutic intervention against pancreatic cancer. *Mol Genet Genomics* 2022;297(6):1565-80. doi: 10.1007/s00438-022-01943-w
- 67. Bao H, Huo Q, Yuan Q, Xu C. Fibronectin 1: A potential biomarker for ovarian cancer. *Dis Markers* 2021;2021(1):5561651. doi: https://doi.org/10.1155/2021/5561651
- 68. Chen C, Ye L, Yi J, Liu T, Li Z. Fn1 mediated activation of aspartate metabolism promotes the progression of triple-negative and luminal a breast cancer. *Breast Cancer Res Treat* 2023;201(3):515-33. doi: 10.1007/s10549-023-07032-9
- 69. Geng Q-S, Huang T, Li L-F, Shen Z-B, Xue W-H, Zhao J. Over-expression and prognostic significance of fn1, correlating with immune infiltrates in thyroid cancer. *Fron Med* 2022;8:812278.
- 70. Li J, Chen C, Chen B, Guo T. High fn1 expression correlates with gastric cancer progression. *Pathol Res Pract*2022;239:154179.

- 71. Lukey MJ, Greene KS, Erickson JW, Wilson KF, Cerione RA. The oncogenic transcription factor c-jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy. *Nat Commun* 2016;7(1):11321. doi: 10.1038/ncomms11321
- 72. Han Y, Katayama S, Futakuchi M, Nakamichi K, Wakabayashi Y, Sakamoto M, et al. Targeting c-jun is a potential therapy for luminal breast cancer bone metastasis. *Mol Cancer Res* 2023;21(9):908-21. doi: 10.1158/1541-7786.Mcr-22-0695
- 73. Miao R, Dai CC, Mei L, Xu J, Sun SW, Xing YL, et al. Kiaa1429 regulates cell proliferation by targeting c-jun messenger rna directly in gastric cancer. *J Cellular Physiology* 2020;235(10):7420-32.
- 74. Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The cxcl8-cxcr1/2 pathways in cancer. *Cytokine Growth Factor Rev* 2016;31:61-71. doi: 10.1016/j.cytogfr.2016.08.002
- 75. Cambier S, Gouwy M, Proost P. The chemokines cxcl8 and cxcl12: Molecular and functional properties, role in disease and efforts towards pharmacological intervention. *Cell Mol Immunoly* 2023;20(3):217-51. doi: 10.1038/s41423-023-00974-6
- 76. Gu L, Yao Y, Chen Z. An inter-correlation among chemokine (cxc motif) ligand (cxcl) 1, cxcl2 and cxcl8, and their diversified potential as biomarkers for tumor features and survival profiles in non-small cell lung cancer patients. *Transl Cancer Res* 2021;10(2):748.
- 77. Shen Y, Zhang B, Wei X, Guan X, Zhang W. Cxcl8 is a prognostic biomarker and correlated with tnbc brain metastasis and immune infiltration. *Inte immunopharmacol* 2022;103:108454.
- 78. Qi W-Q, Zhang Q, Wang J-B. Cxcl8 is a potential biomarker for predicting disease progression in gastric carcinoma. *TranslCancer Res* 2020;9(2):1053-62.
- 79. Guo F, Long L, Wang J, Wang Y, Liu Y, Wang L, et al. Insights on cxc chemokine receptor 2 in breast cancer: An emerging target for oncotherapy (review). *Oncol Lett* 2019;18(6):5699-708. doi: 10.3892/ol.2019.10957
- 80. Huang H. Matrix metalloproteinase-9 (mmp-9) as a cancer biomarker and mmp-9 biosensors: Recent advances. *Sensors (Basel)* 2018;18(10). doi: 10.3390/s18103249
- 81. Li H, Qiu Z, Li F, Wang C. The relationship between mmp-2 and mmp-9 expression levels with breast cancer incidence and prognosis. *Oncol Lett* 2017;14(5):5865-70. doi: 10.3892/ol.2017.6924
- 82. Milde-Langosch K. The fos family of transcription factors and their role in tumourigenesis. *Eur J Cancer* 2005;41(16):2449-61. doi: https://doi.org/10.1016/j.ejca.2005.08.008
- 83. Bhosale PB, Kim HH, Abusaliya A, Vetrivel P, Ha SE, Park MY, et al. Structural and functional properties of activator protein-1 in cancer and inflammation. *Evid Based Complement Alternat Med* 2022;2022:9797929. doi: 10.1155/2022/9797929
- 84. Quinlan GJ, Martin GS, Evans TW. Albumin: Biochemical properties and therapeutic potential. *Hepatology* 2005;41(6):1211-9.
- 85. Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. *Molecul Aspects of Med* 2012;33(3):209-90. doi: https://doi.org/10.1016/j.mam.2011.12.002
- 86. Yoshikawa N, Yoshihara M, Tamauchi S, Ikeda Y, Yokoi A, Kajiyama H. Hypoalbuminemia for the prediction of survival in patients with stage ivb cervical cancer. *PLOS ONE* 2022;17(9):e0273876. doi: 10.1371/journal.pone.0273876
- 87. Barber MD, Ross JA, Fearon KC. Changes in nutritional, functional, and inflammatory markers in advanced pancreatic cancer. *Nutr Cancer* 1999;35(2):106-10.

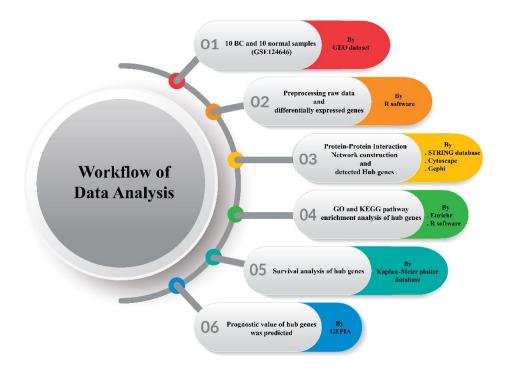
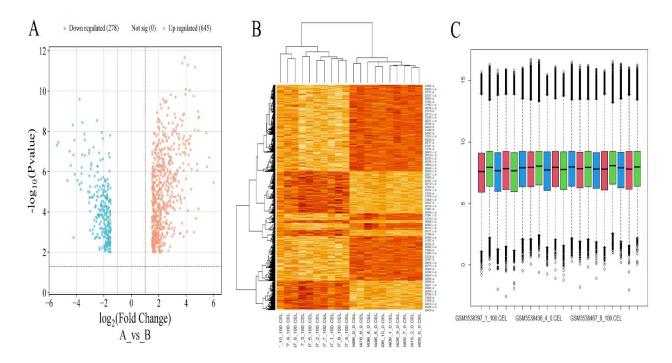
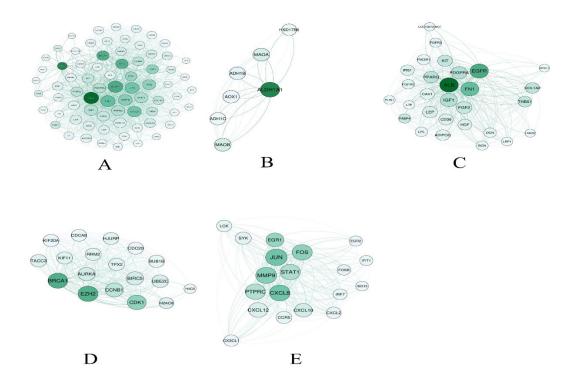
- 88. Abudayyeh A, Abdelrahim M, Salahudeen A. Chapter 11 fluid and electrolyte abnormalities in patients with cancer. In: Finkel KW, Howard SC, editors. Renal disease in cancer patients: Academic Press; 2014. p. 167-82.
- 89. Li Y, Tang H, Huang Z, Qin H, Cen Q, Meng F, et al. Bioinformatics analysis and identification of genes and pathways involved in patients with wilms tumor. *Transl Cancer Res* 2022;11(8):2843-57. doi: 10.21037/tcr-22-1847
- 90. Wu Q-Q, Wang X-Y, Wu W-X, Chen Y-X, Wang J, Zhang X, et al. Molecular mechanisms investigation for liver metastasis of colorectal cancer by combined bioinformatic gene expression profile analysis. *Cancer Treat Res Commun* 2023;35:100694. doi: https://doi.org/10.1016/j.ctarc.2023.100694
- 91. Wang F, Hou W, Chitsike L, Xu Y, Bettler C, Perera A, et al. Abl1, overexpressed in hepatocellular carcinomas, regulates expression of notch1 and promotes development of liver tumors in mice. *Gastroenterology* 2020;159(1):289-305.e16. doi: 10.1053/j.gastro.2020.03.013
- 92. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: A systematic review of the epidemiological literature. *Nutr J* 2010;9:69. doi: 10.1186/1475-2891-9-69
- 93. Costa G. Cachexia, the metabolic component of neoplastic diseases. *Cancer Res* 1977;37(7 Pt 2):2327-35.
- 94. Zhang Y, Liu Z. Stat1 in cancer: Friend or foe? Discov Med 2017;24(130):19-29.
- 95. Koromilas AE, Sexl V. The tumor suppressor function of stat1 in breast cancer. *JAK-STAT* 2013;2(2):e23353. doi: 10.4161/jkst.23353
- 96. Klover PJ, Muller WJ, Robinson GW, Pfeiffer RM, Yamaji D, Hennighausen L. Loss of stat1 from mouse mammary epithelium results in an increased neu-induced tumor burden. *Neoplasia* 2010;12(11):899-905. doi: 10.1593/neo.10716
- 97. Raven JF, Williams V, Wang S, Tremblay ML, Muller WJ, Durbin JE, et al. Stat1 is a suppressor of erbb2/neu-mediated cellular transformation and mouse mammary gland tumor formation. *Cell Cycle* 2011;10(5):794-804. doi: 10.4161/cc.10.5.14956
- 98. Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, et al. Stat1-deficient mice spontaneously develop estrogen receptor α -positive luminal mammary carcinomas. *Breast Cancer Res* 2012;14(1):R16. doi: 10.1186/bcr3100
- 99. Widschwendter A, Tonko-Geymayer S, Welte T, Daxenbichler Gn, Marth C, Doppler W. Prognostic significance of signal transducer and activator of transcription 1 activation in breast cancer1. *Clin Cancer Res* 2002;8(10):3065-74.
- 100. Tymoszuk P, Charoentong P, Hackl H, Spilka R, Müller-Holzner E, Trajanoski Z, et al. High stat1 mrna levels but not its tyrosine phosphorylation are associated with macrophage infiltration and bad prognosis in breast cancer. *BMC Cancer* 2014;14:257. doi: 10.1186/1471-2407-14-257
- 101. Magkou C, Giannopoulou I, Theohari I, Fytou A, Rafailidis P, Nomikos A, et al. Prognostic significance of phosphorylated stat-1 expression in premenopausal and postmenopausal patients with invasive breast cancer. *Histopathology* 2012;60(7):1125-32. doi: 10.1111/j.1365-2559.2011.04143.x
- 102. Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M. Tumor stat1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. *J Biol Chem* 2013;288(17):11676-88. doi: 10.1074/jbc.M112.441402

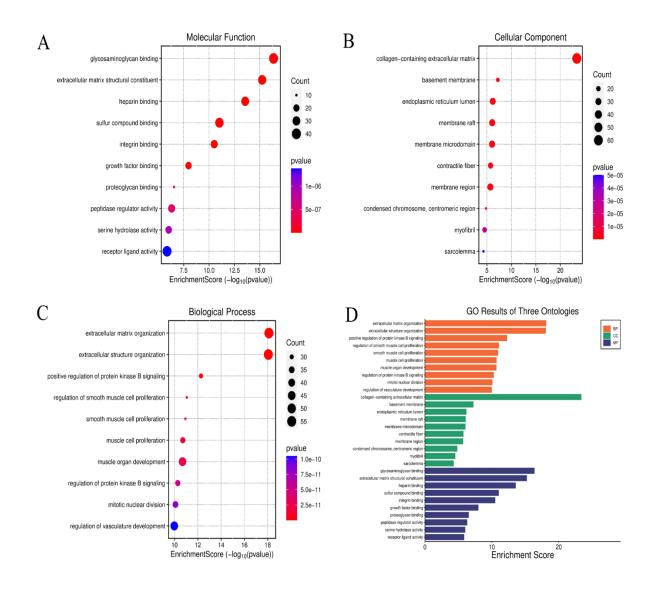
- 103. Thomas M, Finnegan CE, Rogers KM-A, Purcell JW, Trimble A, Johnston PG, et al. Stat1: A modulator of chemotherapy-induced apoptosis. *Cancer Res* 2004;64(22):8357-64.
- 104. Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, et al. Doxorubicin-an agent with multiple mechanisms of anticancer activity. *Cells* 2023;12(4). doi: 10.3390/cells12040659
- 105. Du Y, Grandis JR. Receptor-type protein tyrosine phosphatases in cancer. *Chin J Cancer* 2015;34(2):61-9. doi: 10.5732/cjc.014.10146
- 106. Barashdi MAA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type c (ptprc or cd45). *J Clin Pathol* 2021;74(9):548-52. doi: 10.1136/jclinpath-2020-206927
- 107. Hermiston ML, Gupta V, Weiss A. Chapter 95 cd45. In: Bradshaw RA, Dennis EA, editors. Handbook of cell signaling (second edition). San Diego: Academic Press; 2010. p. 743-8.
- 108. Li P, Wang W, Wang S, Cao G, Pan T, Huang Y, et al. Ptprc promoted cd8+ t cell mediated tumor immunity and drug sensitivity in breast cancer: Based on pan-cancer analysis and artificial intelligence modeling of immunogenic cell death-based drug sensitivity stratification. *Front Immunol* 2023;14:1145481. doi: 10.3389/fimmu.2023.1145481
- 109. Wang B, Yu J, Sun Z, Luh F, Lin D, Shen Y, et al. Kinesin family member 11 is a potential therapeutic target and is suppressed by microrna-30a in breast cancer. *Mol Carcinog* 2020;59(8):908-22. doi: 10.1002/mc.23203
- 110. Rakha EA, El-Sheikh SE, Kandil MA, El-Sayed ME, Green AR, Ellis IO. Expression of brca1 protein in breast cancer and its prognostic significance. *Hum Pathol* 2008;39(6):857-65. doi: https://doi.org/10.1016/j.humpath.2007.10.011
- 111. Maciel-Cruz EJ, Figuera-Villanueva LE, Garibaldi-Ríos AF, Gómez-Meda BC, Zúñiga-González GM, Pérez AM, et al. Aurka gene variants rs1047972, and rs8173 are associated with breast cancer. *J Breast Cancer* 2023;26(4):378-90. doi: 10.4048/jbc.2023.26.e31
- 112. Du R, Huang C, Liu K, Li X, Dong Z. Targeting aurka in cancer: Molecular mechanisms and opportunities for cancer therapy. *Mol Cancer* 2021;20(1):15. doi: 10.1186/s12943-020-01305-3
- 113. Miralaei N, Majd A, Ghaedi K, Peymani M, Safaei M. Integrated pan-cancer of aurka expression and drug sensitivity analysis reveals increased expression of aurka is responsible for drug resistance. *Cancer Med* 2021;10(18):6428-41. doi: 10.1002/cam4.4161
- 114. Aljohani AI, Toss MS, Green AR, Rakha EA. The clinical significance of cyclin b1 (ccnb1) in invasive breast cancer with emphasis on its contribution to lymphovascular invasion development. *Breast Cancer Res Treat* 2023;198(3):423-35. doi: 10.1007/s10549-022-06801-2
- 115. Niméus-Malmström E, Koliadi A, Ahlin C, Holmqvist M, Holmberg L, Amini RM, et al. Cyclin b1 is a prognostic proliferation marker with a high reproducibility in a population-based lymph node negative breast cancer cohort. *Int J Cancer* 2010;127(4):961-7. doi: 10.1002/jjc.25091
- 116. Xing Z, Wang X, Liu J, Zhang M, Feng K, Wang X. Expression and prognostic value of cdk1, ccna2, and ccnb1 gene clusters in human breast cancer. *J Int Med Res* 2021;49(4):0300060520980647.
- 117. Fang L, Liu Q, Cui H, Zheng Y, Wu C. Bioinformatics analysis highlight differentially expressed ccnb1 and plk1 genes as potential anti-breast cancer drug targets and prognostic markers. *Genes* 2022;13(4):654.
- 118. Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, et al. Ribonucleotide reductase m2 (rrm2): Regulation, function and targeting strategy in human cancer. *Genes Dis* 2024;11(1):218-33. doi: 10.1016/j.gendis.2022.11.022

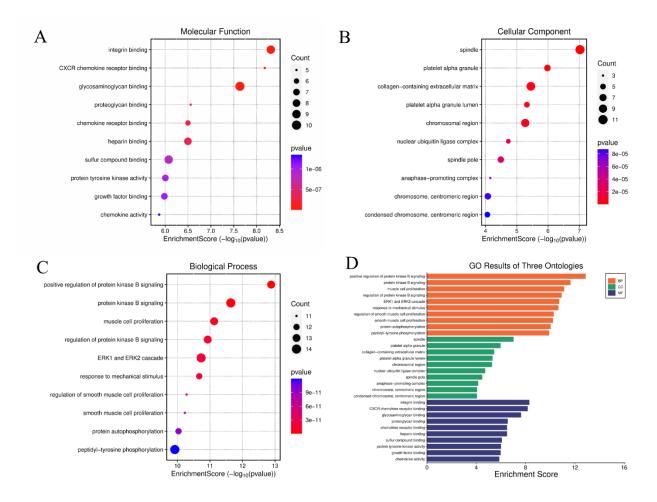
- 119. Tarangelo A, Rodencal J, Kim JT, Magtanong L, Long JZ, Dixon SJ. Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. *Life sci Alliance* 2022;5(4).
- 120. Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. Cdc20 in and out of mitosis: A prognostic factor and therapeutic target in hematological malignancies. *J Exp Clin Cancer Res* 2022;41(1):159. doi: 10.1186/s13046-022-02363-9
- 121. He W, Meng J. Cdc20: A novel therapeutic target in cancer. *Am J Transl Res* 2023;15(2):678-93.
- 122. Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting cdc20 as a novel cancer therapeutic strategy. *Pharmacol Ther* 2015;151:141-51.
- 123. Wang Z, Wan L, Zhong J, Inuzuka H, Liu P, Sarkar FH, et al. Cdc20: A potential novel therapeutic target for cancer treatment. *Curr Pharm Des* 2013;19(18):3210-4.
- 124. Malumbres M. Cyclin-dependent kinases. *Genome Biol* 2014;15(6):122. doi: 10.1186/gb4184
- 125. Łukasik P, Załuski M, Gutowska I. Cyclin-dependent kinases (cdk) and their role in diseases development-review. *Int J Mol Sci* 2021;22(6). doi: 10.3390/ijms22062935
- 126. Myslinski E, Gérard MA, Krol A, Carbon P. Transcription of the human cell cycle regulated bub1b gene requires hstaf/znf143. *Nucleic Acids Res* 2007;35(10):3453-64. doi: 10.1093/nar/gkm239
- 127. Koyuncu D, Sharma U, Goka ET, Lippman ME. Spindle assembly checkpoint gene bub1b is essential in breast cancer cell survival. *Breast Cancer Res Treat* 2021;185(2):331-41. doi: 10.1007/s10549-020-05962-2
- 128. Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, et al. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. *Clin Cancer Res* 2006;12(2):405-10. doi: 10.1158/1078-0432.Ccr-05-0903
- 129. Pogodin E. Role of aox1 in prostate cancer progression: Icahn School of Medicine at Mount Sinai; 2024.
- 130. Zhang H, Liu YP, Ge AQ, Wang X, Sun HR, Bi HR, et al. [association between aox1, irf4 methylation in peripheral blood leukocyte DNA and the risks of breast cancer: A case-control study]. *Zhonghua Liu Xing Bing Xue Za Zhi* 2018;39(9):1265-9. doi: 10.3760/cma.j.issn.0254-6450.2018.09.023
- 131. Nisar M, Paracha RZ, Arshad I, Adil S, Zeb S, Hanif R, et al. Integrated analysis of microarray and rna-seq data for the identification of hub genes and networks involved in the pancreatic cancer. *Front Genet* 2021;12:663787.
- 132. Xiong L, Feng Y, Hu W, Tan J, Li S, Wang H. Expression of aox1 predicts prognosis of clear cell renal cell carcinoma. *Front Genet* 2021;12:683173.
- 133. Dasgupta S. Systems biology and machine learning identify genetic overlaps between lung cancer and gastroesophageal reflux disease. *OMICS* 2024;28(10):492-503.
- 134. Shao X, Hou H, Chen H, Xia W, Geng X, Wang J. Gata1 activates hsd17b6 to improve efficiency of cisplatin in lung adenocarcinoma via DNA damage. *Genes Environ* 2024;46(1):27.
- 135. Lv L, Lv L, Zhao Y, Wei Q, Zhao Y, Yi Q. Downexpression of hsd17b6 correlates with clinical prognosis and tumor immune infiltrates in hepatocellular carcinoma. Cancer Cell Int [Internet]. 2020 2020; 20:[210 p.]. Available from:

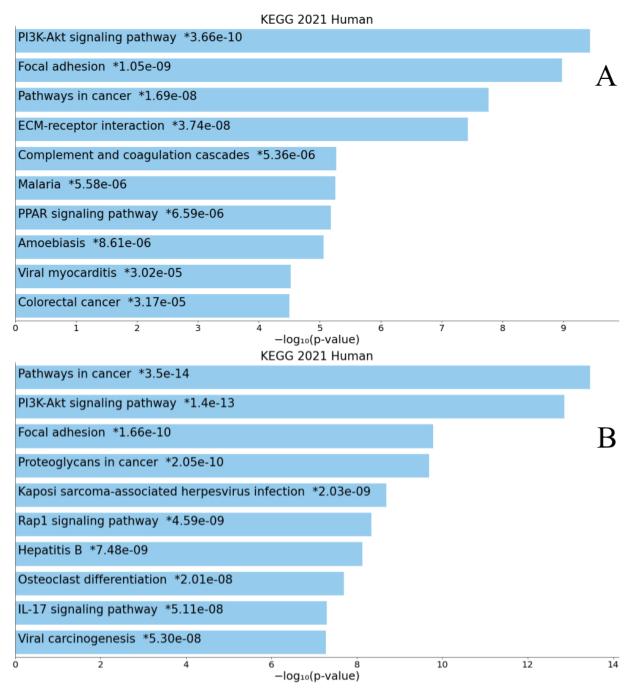
- 136. Terry MB, Knight JA, Zablotska L, Wang Q, John EM, Andrulis IL, et al. Alcohol metabolism, alcohol intake, and breast cancer risk: A sister-set analysis using the breast cancer family registry. *Breast Cancer Res Treat* 2007;106(2):281-8. doi: 10.1007/s10549-007-9498-7
- 137. Hahn M, Simons CCJM, Weijenberg MP, van den Brandt PA. Alcohol drinking, adh1b and adh1c genotypes and the risk of postmenopausal breast cancer by hormone receptor status: The netherlands cohort study on diet and cancer. *Carcinogenesis* 2018;39(11):1342-51. doi: 10.1093/carcin/bgy101
- 138. Symonds ALJ, Miao T, Busharat Z, Li S, Wang P. Egr2 and 3 maintain anti-tumour responses of exhausted tumour infiltrating cd8+t cells. *Cancer Immunology, Immunotherapy* 2023;72(5):1139-51. doi: 10.1007/s00262-022-03319-w
- 139. Qiu K, Ding D, Zhang F, Yang B. Ltf as a potential prognostic and immunological biomarker in glioblastoma. *Biochel Genet* 2025;63(3):2347-62. doi: 10.1007/s10528-024-10716-6
- 140. Hu L, Gao C-h, Hong C, Zhong Q, Dong H-L, Gao X-M. Expression, purification, and breast cancer cell inhibiting effect of recombinant human lactoferrin c-lobe. *Biosci, Biotechnol, and Biochem* 2016;80(2):257-63. doi: 10.1080/09168451.2015.1088376
- 141. Hu J, Li S. The role of lama2 in cancer: Current perspectives. *Cancer Research Journal* 2022;10(4):85-8.
- 142. Li S, Hu J, Li G, Mai H, Gao Y, Liang B, et al. Epigenetic regulation of linc01270 in breast cancer progression by mediating lama2 promoter methylation and mapk signaling pathway. *Cell Biol Toxicol* 2023;39(4):1359-75. doi: 10.1007/s10565-022-09763-9
- 143. Amatori S, Tavolaro S, Gambardella S, Fanelli M. The dark side of histones: Genomic organization and role of oncohistones in cancer. *Clin Epigenetics* 2021;13(1):71. doi: 10.1186/s13148-021-01057-x
- 144. Lai PM, Chan KM. Roles of histone h2a variants in cancer development, prognosis, and treatment. *Int J Mol Sci* 2024;25(6):3144.
- 145. Ragusa D, Vagnarelli P. Contribution of histone variants to aneuploidy: A cancer perspective. *Front Genet* 2023;14:1290903.

Figure captions


Figure 1. Flow diagram of the bioinformatics analysis in the present study.


Figure 2. Identification of DEGs from the GSE124646 dataset in BC tissues compared with normal breast tissues. | Log2FC| > 1.5 and P value < 0.01 were used as selection criteria for DEGs. (A)Volcano plot of differential expression analysis. The red dots represent upregulated genes, and the blue dots represent downregulated genes. (B)Heatmap of 10 normal and 10 BC samples. The heatmap represents the differential expression profiles of DEGs (|log2FC| >1.5, p-value < 0.01) in the GES124646 microarray. (C)Box plot representations of the distribution of data after normalization via the MAS5 method. Abbreviations: DEGs, differentially expressed genes; BC: breast cancer


Figure 3. Protein-protein interaction network constructed with the hub genes and module screening constructed via the STRING online database and visualized via Cytoscape. Notes: The diameter of each node indicates the degree of connectivity, and the intensity of the color of each node indicates betweenness for each node in the network. A higher degree of the node represents a hub gene with more connections to other hub genes. The whole PPI network of proteins is encoded by the hub genes (A) and the network of four functional clusters (B-E). Abbreviations: PPI, protein-protein interaction.

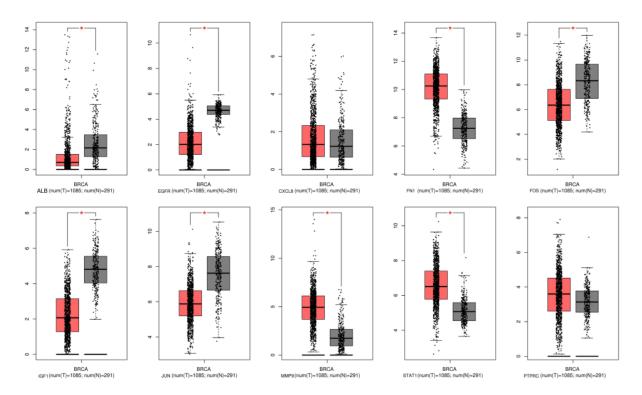

Figure 4. GO enrichment analysis of DEGs. (A-C) Dot plot of the results of the GO enrichment analysis of molecular function (A), cellular component (B), and biological process (C) terms. (D) Bar graph of the top 10 GO terms of the DEGs. Terms. Abbreviations: DEGs, differentially expressed genes; GO, gene ontology

Figure 5. GO enrichment analysis of the hub genes. (A-C) Dot plot of the results of the GO enrichment analysis of molecular function (A), cellular component (B), and biological process (C) terms. (D) Bar graph of the top 10 GO terms of the hub genes. Abbreviations: GO, gene ontology.

Figure 6. KEGG enrichment analysis of DEGs (A) and hub genes (B). Abbreviations: DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 7. Expression profiles of the hub genes in BC patients. The top 10 hub genes with the highest degree were analyzed via the GEPIA online database to further verify the expression level of the hub genes between BC tissues and normal tissues. The pink box represents BC samples, and the gray box represents normal samples.

Tables

Table 1. Differentially expressed genes. 923 differentially expressed genes (DEGs), including 645 upregulated genes and 278 downregulated genes, were identified and confirmed from the Gene Expression Omnibus (GEO) database.

Regulation	DEGs (gene symbol)
Upregulated	COL11A1, COL10A1, PITX1, NEK2, IFI44L, COL10A1, TOP2A,
	MMP1, INHBA, COMP, COL11A1, CXCL11, MMP11,
	NUSAP1, CST1, BIRC5, ASPM, ISG15, FOXM1, CXCL10,
	MMP9, STAT1, FGFR3, NDC80, CEP55, NA, RRM2, TOP2A,
	SAC3D1, NKG7, GINS2, TACC3, CXCL9, LMNB1, KIF2OA,
	MMP11, EZH2, S100P, CDK1, CXCL11, IL21R, NA, PITX1, NA,
	RSAD2, NSD2, H2AC8, H2BC5, DLGAP5, SPP1, TNNT1,
	SNX10, MYBL1, NA, IL32, PLAUR, MKI67, CKS2, AURKA,
	SULF1, NA, RGS1, MELK, STAT1, NA, HJURP, CDCA3, IFI27,
	H2BC9, PCLAF, CDC20, NA, IFI6, ADAMDEC1, AURKA, NA,
	CD52, MNDA, NA, CENPM, CXCL8, HSD17B6, SLC2A6, FN1,
	NCAPG, NA, SLC15A3, SLAMF8, STAT1, GINS1, MILR1,
	LAMP3, TK1, H2BS1, NCAPG, STAT1, H1-2, NOD2,
	SERPINA6, SYK, OAS2, NPL, FANCI, NUP210, NA, PLXNC1,
	FN1, NSD2, KPNA2, LEF1, STAT1, MCM4, BIRC5, LILRB1,
	NUSAP1, TPX2, CDK1, BST2, FCMR, FN1, BGN, CD52, RRM2,

E2F8, LYZ, NA, LILRB3, DPP3, CCN4, GTSE1, IDO1, RNF19B, SAMSN1, SH2D1A, PAFAH1B3, GYPA, CDCA8, LILRB3, BGN, TFRC, RHOD, FN1, LILRB3, AQP9, CCNB2, NA, HSD17B6, NCLN, NA, KIFC1, CLIC3, YKT6, SERPINA1, CLEC4A, BUB1, AP1S1, NA, SQSTM1, IFIH1, MX1, NFKB2, SULF1, IFIT1, MAZ, CCR5, SULF1, NA, ATP13A2, TRAF3IP3, CDK1, H1-4, LTB, BGN, CENPN, PCYT1B, CENPE, MAD2L1, GK, TAP1, SERPINA1, NA, LST1, UBE2S, KIF11, PRC1, STK10, ATP2C1, KIF26B, H2AX, MYBL2, CTSD, CD72, KPNA2, SNX24, TGM2, METRN, PPIF, F12, GBP1, GZMB, RGS14, PBK, SLC6A9, THBS1, SQLE, LCK, TDO2, ADAM8, IRF7, UNC5B, HCP5, CANT1, TREM1, TYMP, APOC1, P2RY10, ELF4, LILRB1, GZMK, H4C8, MRPL35, BUB1, E2F5, CST5, HMGB3, HMMR, SHCBP1, NA, OAS1, PTPRC, HLA-C, SERPINH1, CCL19, HLA-DQB1, CSF2RA, TGM2, RGS1, ERCC6L, CNTNAP2, PMAIP1, COL1A2, NA, MSC, CFB, GK, CAPG, PTTG3P, EMC1, ACOT7, TRAT1, NKAIN1, BUB1B, NA, TFRC, SLC19A1, MSR1, CENPF, UBE2C, MFAP2, RAC2, FAM49B, NA, CENPF, JPT1, SPI1, CD86, TMEM127, ITGAL, CCNB1, H2BC5, TPI1, NA, HLA-DQB1, ITGAX, USP18, PSMC4, LRRC15, BRCA1

Downregulated

LTF, RBP4, ADH1B, PPP1R1A, NA, KRT15, NA, MYH11, NA, LPL, WIF1, SCGB1D2, DST, APOD, CSN3, DLK1, FOSB, LEP,

NA, PLIN1, MYH11, NA, GPD1, DCX, HLF, FABP4, ELF5, COL17A1, ADH1B, CSN1S1, OGN, OXTR, LYVE1, DST, ACACB, MT1M, SVEP1, DZIP1, SOSTDC1, OLFM4, PAMR1, GPD1, PIP, ADIPOQ, CNN1, PDK4, MME, NA, ZBTB16, PTN, NA, KIT, SCGB2A1, HLF, CAPN6, KRT14, CXCL2, SLC26A3, TMPRSS2, FAXDC2, GULP1, NA, SFRP1, SCGB2A2, ABCA8, TIMP4, SRPX, SORBS1, LIPE, FHL1, FKBP5, FHL1, CLDN8, NTRK2, ITGA7, SCN3A, CFD, MYH11, LIFR, FHL1, GREM2, GPM6B, LPL, EZH1, SFRP1, CHRDL1, SLIT3, LMOD1, RELN, DUSP6, NA, GPC3, MAOB, RUNX1T1, NA, GABRP, NA, NA, GPM6B, HSPB2, NTRK2, SFRP1, NFIB, TPPP3, BBOX1, HLF, JCHAIN, GPM6B, PTN, MFAP4, HPSE2, SOX10, CXCL12, NA, SPRY2, CA4, ELF5, NA, FHL1, DPT, S100B, CD36, TF, EGFR, NPR1, DPT, FXYD1, NA, NTRK2, HBB, PENK, NA, CES1, MME, PTN, NA, PEG3, MYH11, NA, NSG1, FHL1, LTBP4, NFIB, LAMA3, NA, CIDEA, CLDN5, NA, LYVE1, NA, SYNM, NLGN4X, FOS, SPTBN1, HOXA5, ACACB, NA, TGFBR3, CSN2, IGF1, MAOA, MIA, LDB2, CAB39L, EDN3, NA, DUSP1, LAMC3, EDNRB, TTYH1, LTBP4, KRT5, MATN2, NA, TGFBR2, FGFR2, AREG, DMD, IGFBP6, PPP1R12B, PCOLCE2, CD36, LHFPL6, ACACB, PDE9A, NA, CDKN1C, NA, TAT, C1orf21, TNFRSF17, FAM107A, FAM13A, NA, GULP1, PLPP3, GPX3, ADH1C, OPRPN, CX3CL1, EIF1, CYBRD1, C7, NDRG2, GYG2, DCN, MYLK, ACKR1, ABCA6, NA, NAV3, MFAP5, IGF1, ITM2A, CX3CL1, EDNRB, ALB, PPP2R1B, ACSM5, RBM5, HBB, CDKN1C, CCL21, NA, NA, HBB, MYBPC1, HOXA7, HPGD, CAPN6, CRYAB, PPARG, NDRG2, GHR, MYOC, CRABP1, NA, GSN, FAM13A, ADH1B, ARL4A, LAMA2, IGF1, RUNX1T1, SOCS2, GSN, TCF7L2, EFHC1, RECK, NR4A2, MMRN1, CEL, PDGFD, F3, MEG3, PDGFRA, DCLK1, AASS, LAMA2, KLF4, MAOA, DCN, FMO2, AHNAK, NA, GRAMD2B, EDNRB, PDZD2, AMIGO2, CITED1, CPE, CDO1, CIDEC, KCNJ8, NA, SNX1, NA, SCN3B, DPT, NA, ITGA7, ZNF334, TFPI, ATP1A2, ZNF711, TAC1, ACSM1, TCN1, MOCS1, MT1X, TP63, TFPI, GIPC2, DCN, SGCE, NA, MEG3, NEDD4L, MEGF9, TP63, KLF4, CDKN1C, PLAGL1, SLC25A37, SERPINA5, TF, CORO2B, MEOX2, COL14A1, GPX3, PCK1, JUN, RGS2, RRAD, GPM6A, CPE, IGH, ARHGAP19, PELI2, CAV1, SLC6A14, PROS1, PPL, SLC22A3, FAM149A, NAALAD2, F10, PYGB, FBLN5, CHST3, MBD2, AGTR1, PDE2A, EGR1, BHMT2, MAOA, NOVA1, PLSCR4, OMD, SH3BP2, MAF, GPM6A, CAV1, MPPED2, ADAMTS5, PDGFRL, NA, AOC3, ITIH5, AK4, NA, NUDT2, ADAMTS1, NFIB, LAMA2, NFIB, NA, CBX7, PDLIM4, ID4, TNN, ALDH1A1, HEY2, EHD2, GYG2, FAM149A, CAV2, TFPI, CRY2, BMP4, ZNF230, SETD4, NRG2, PLPP3, KLHL29, DCN, TIE1, GPRASP1, LRRC17, KLF9, RND3, PLPP3, AK5, ANKZF1, GRIK2, ACTG2, LRP1, TCF7L2, IGFBP1, NCALD, CAVIN2, MFAP5, TFPI, HEY1, NFIB, SPATA6, PLA2R1, ZBTB20, SLPI, ITM2A, AGTR1, PLEKHS1, ACACB, NFIB, CSRNP3, ADD3, LAMA4, XIST, NA, GRB10, CHL1, NFASC, SUN1, SORBS2, KLF9, COX7A1, PIK3R1, GPM6B, DUSP6, CFH, TCF7L2, PCDH9, DIXDC1, LOC389906, PTHLH, NR4A1, PPP1R15A, TRIM29, ARID5B, HSD17B2, GNAL, ARHGAP6, FOXI1, ID4, ALDH1A3, FBLN1, KLF3-AS1, NKTR, SNCAIP, MAFF, IL11RA, PER2, ENPEP, HNRNPH1, P3H2, SORBS1, FAXDC2, SLIT3, NA, NA, METTL7A, NA, 1-Mar, ANGPTL4, EHF, NID1, CCN1, IGF1, NA, FOXO3, CAMSAP1, FZD7, MED6, SLC13A2, TSC22D3, PARD3, FMO1, ADD3, JUN, FHL5, VSTM4, KLK11, ALDH1L1, ADGRA2, SLCO1A2, ANK2, TENM1, FGF2, NMNAT2, XIST, PRELP, TNMD, ASPH, DCX, SLC27A6, FBLN1, EYA2, AOX1, FGF1, EMP1, PLAGL1, ABLIM1, NA, SGCD, FBLN1, CTSG, SPTBN1, MAFK, C14orf132, NPR2, ASIC1, PER2, NA, SOCS2, SPRY1, EREG, OLFM1, TRIM29, TNS1, PDLIM4, SEMA6A, KCNAB1, HGF, TRMT9B, CACNA1G, PNISR, FAM13A, PTHLH, PDLIM3, ADD3, GPD1L, ENPEP, CDKN1C, LAMB3, IL33, MT1X, IRS1, FHOD3, PRSS12, NFIB,

GYG2, MID1, ADAMTS8, NA, PEG3, KIZ, PIK3C2G, IGLC1, ACTA2, CAPN3, TFAP2C, RASL10A, TM4SF1, CSRP1, RAPGEF3, AGFG2, ADGRL3, SOBP, EGFR, EFEMP1, NPR1, TXNIP, SPARCL1, CAT, PIGR, MRC1, POU6F1, PLXDC1, NA, SEMA3C, DKK3, TRIM33, RRP15, LIMCH1, CAV2, NA, RCAN1, ABCF2, ATP1A2, RRAGD, GPER1, LRRC36, JUN, ANPEP, TNS1, COL14A1, GULP1, OLFML2A, ADD3, PID1, STEAP4, ENPP2, NA, SLC44A1, CA3, KLK5, RAI2, TAGLN, SESN1, ATF3, CIRBP, COL4A3, ANKH, PART1, PHYHIP, EWSR1, TRPC1, PALMD, GAS7, PIK3R1, DST, DCLK1, TRMO, EBF2, GAS7, NA, PTPRB, KLK10, DPYSL2, CFAP69, TRIO, MT1E, PIK3R1, MAP1LC3C, NA, SCN7A, NA, TMEM47, DST, AOX1, TGFBR2, DENND2A, EGR2, MPZL2, TCF7L2, KCNMA1, TXNIP, FER, EXOC7, RGCC, LRP2, KLK7, KCNAB1, WLS, MKRN2, FMOD, MEIS2, NES, PGF, EDN1, GOLGA8A, NA, ZBTB20, COL7A1, NRG2

Table 2. Gene sets of each module and the top KEGG pathway terms

module	gene	Pathways in KEGG analysis
0	ADH1B, ALDH1A1, MAOB,	PI3K-Akt signaling pathway
	MAOA, AOX1, ADH1C,	Focal adhesion
	HSD17B6	Pathways in cancer
		ECM-receptor interaction
		Complement and coagulation
		cascades
		Malaria
		PPAR signaling pathway
1	FABP4, ADIPOQ, HGF, LRP1,	PI3K-Akt signaling pathway
	FGF2, PPARG, ALB, COL1A2,	Focal adhesion
	PLIN1, IRS1, LEP, CAV1, FN1,	Proteoglycans in cancer
	IGF1, LPL, CD36, DCN, LTF,	Rap1 signaling pathway
	PDGFRA, THBS1, EGFR, KIT,	Pathways in cancer
	BGN, LOC102723407, LAMA2,	Ras signaling pathway
	FGFR3, FGFR2, PIK3R1,	AMPK signaling pathway
	MYH11	
2	CXCL10, CXCL8, STAT1, JUN,	IL-17 signaling pathway
	MMP9, CXCL12, PTPRC,	

	CX3CL1, EGR1, CCR5, LCK,	Kaposi sarcoma-associated
	SYK, FOS, IRF7, CXCL2, FOSB,	herpesvirus infection
	IFIT1, ISG15, EGR2	Hepatitis B
		Chemokine signaling pathway
		Viral protein interaction with
		cytokine and cytokine
		receptor
		Toll-like receptor signaling
		pathway
		TNF signaling pathway
3	CCNB1, KIF11, CDK1, BRCA1,	Cell cycle
	AURKA, EZH2, HJURP, RRM2,	Oocyte meiosis
	BUB1B, KIF20A, CDCA8,	p53 signaling pathway
	UBE2C, BIRC5, CDC20, TACC3,	Progesterone-mediated
	TPX2, H2AC8, H4C8	oocyte maturation
		Ubiquitin mediated
		proteolysis
		Viral carcinogenesis
		Systemic lupus
		erythematosus