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Introduction
Plants have provided medicine for humans for many 
centuries.1,2 A large percentage of the world’s population, 
especially in developing countries, depend on medicinal 
plants as sources of medicines.3 Secondary metabolites 
have been recognised as the healing principles in plants. 
Cancer is a leading cause of death globally.4 It kills 
about 10 million people every year across the globe.5 
Approximately 70% of cancer-related deaths occur in 
low- and middle-income countries.6 Many cancer drugs 
have been developed, the majority of which have serious 

adverse effects.1,7 Therefore, there is a need for anticancer 
drugs that are more tolerable, effective, and less toxic. 

Olax subscorpioidea Oliv. belongs to the Olacaceae family 
that comprises shrubs, trees and woody dicotyledonous 
plants with significant economic and medicinal values. 
This family includes a range of secondary metabolites, 
such as flavonoids, triterpenoids, and secoiridoids, each 
exhibiting diverse biological activities.8-10 The plants, 
distributed within about 25 genera, are widely distributed 
in temperate and tropical regions.9 

Olax subscorpioidea is a shrub-like tree that reaches 
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ARTICLE INFO Abstract
Background: Olax subscorpioidea is traditionally used to treat arthritis, cancer, diabetes, 
neurodegenerative disorders, and oxidative stress. This study carried out chromatographic 
isolation, cytotoxicity, and molecular docking studies of bioactive compounds from O. 
subscorpioidea.
Methods: The root of O. subscorpioidea was extracted with methanol using the Soxhlet extraction 
method. The extract was partitioned into n-hexane, dichloromethane (DCM), and methanol/
water. The DCM fraction was subjected to column chromatography. Bioactive compounds 
were isolated and their chemical structures were established by one-dimensional (1D) and two-
dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy, and by comparing their 
NMR data with those previously reported in the literature. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) assay was used to evaluate the cytotoxic activity of 
these compounds against three human cancer cell lines: breast (MCF-7), cervical (HeLa), and 
colorectal (Caco-2) cell lines. Molecular docking was used to gain insights into the favourable 
binding conformations and energies of the compounds when interacting with ten selected 
cancer-related protein targets.
Results: The phytochemical investigation of the extract of O. subscorpioidea afforded two sterol 
glycosides, stigmast-5,22-dien-3-O-β-D-glucoside (1a) and sitosterol-3-O-β-D-glucoside (1b), as 
a mixture. The compounds were found to be active against HeLa (IC50: 37.0 ± 4.51 µg/mL) and 
MCF-7 (137.07 ± 19.43 µg/mL) cell lines. The compounds showed strong interactions with the 
colchicine-binding site on the β-subunit of tubulin protein, epidermal growth factor receptor 
kinase domain, poly(ADP-ribose) polymerase-1, and 17β-hydroxysteroid dehydrogenase type 
1 (binding energies: –10.3 and –10.0 kcal/mol; –9.3 and –9.3 kcal/mol; –9.2 and –9.2 kcal/
mol; and –9.3 and –9.1 kcal/mol, respectively). Stigmast-5,22-dien-3-O-β-D-glucoside was 
consistently ranked higher in some of the proteins tested. The compounds stabilised in the 
binding sites of the proteins via hydrogen bonds and hydrophobic interactions. 
Conclusion: To the best of our knowledge, this is the first report on the isolation of these 
compounds from this plant. The cytotoxic effects of O. subscorpioidea root extract could be 
partly attributed to stigmast-5,22-dien-3-O-β-D-glucoside and sitosterol-3-O-β-D-glucoside.
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a height of approximately 10 metres.11 The plant is 
traditionally used to treat arthritis, cancer, depression, 
diabetes mellitus, neurodegenerative disorders, oxidative 
stress, and swelling.12,13 Ethnobotanical surveys showed 
that O. subscorpioidea is an important ingredient in 
traditional cancer remedies in Nigeria.14-16 We recently 
reported cytotoxic triterpenoid saponins from O. 
subscorpioidea.17 

The preliminary cytotoxic analysis of the methanol 
root extract of O. subscorpioidea showed antiproliferative 
activity against human rhabdomyosarcoma (RD) and 
breast cancer (MCF-7) cell lines.18 The current study, 
therefore, aimed at isolating and characterising bioactive 
compounds from O. subscorpioidea root extract. The 
potential of these compounds as inhibitors of the growth 
of human cancer cell lines was evaluated by the MTT 
assay. Molecular docking and ADMET (absorption, 
distribution, metabolism, excretion, toxicity) studies were 
also conducted.

Methods
General experimental procedures
The infrared spectroscopy (IR) spectrum was obtained 
using a Cary 630 FTIR spectrophotometer (Agilent 
Technologies, USA). 1D and 2D nuclear magnetic 
resonance (NMR) data were obtained on a Bruker Avance 
III NMR spectrometer at 600 MHz (Bruker, USA). The 
sample was dissolved in dimethyl sulfoxide (DMSO-d6) 
and the solvent residue served as the internal standard. 
Chemical shifts (δ) were measured in parts per million 
(ppm), and coupling constants were measured in hertz 
(Hz). High-performance liquid chromatography (HPLC) 
grade solvents from Fisher Scientific (Loughborough, 
United Kingdom) were used. Cell culture materials include 
Dulbecco’s Modified Eagle Medium (DMEM) (Thermo 
Fisher Scientific, UK), L-glutamine 200 mM (100X) 
(Gibco, UK), antibiotic-antimycotic (100X) (Gibco, UK), 
TrypLE Express (1X) (Thermo Fisher Scientific, UK), 
Fetal bovine serum (Sigma-Aldrich, UK), Phosphate 
buffered-saline (Thermo Fisher Scientific, UK), and MTT 
(Sigma-Aldrich, UK). Vinblastine from Tocris (UK) was 
used as a reference drug. Absorbance measurements were 
performed on a Tecan Spark 10M multimode microplate 
reader (Switzerland).

Plant collection 
The root of O. subscorpioidea was collected in April 2021 
from the University of Ibadan botanical garden, Ibadan, 
Nigeria. The collection and identification of the plant were 
performed by the garden curator, Mr Michael Owolabi. 
A sample was deposited at the Forest Herbarium, Ibadan 
(FHI) with voucher number FHI:113182. The root 
material was cleaned, peeled, and dried in the lab. After 
that, it was ground into powder.

Extraction and fractionation
Approximately 600 g of powdered O. subscorpioidea root 

material was extracted with methanol using the Soxhlet 
extraction method. The extract was concentrated in 
vacuo using a rotary evaporator at a temperature below 
40 °C (Heidolph HB Digital, Germany). The resulting 
extract was dried at room temperature in the laboratory 
and stored for later use. About 63.7 g of extract was 
obtained. The extract was further partitioned into 
n-hexane, dichloromethane (DCM), and water/methanol. 
Approximately 40 g of the extract was dissolved in water/
methanol (20/80%) in a separating funnel and partitioned 
with an equal volume of n-hexane. The hexane fraction 
was obtained and concentrated. The extraction was done 
three times. Into the aqueous fraction, an equal volume of 
DCM was added (extraction was carried out three times) 
and the fraction was concentrated. The aqueous fraction 
was also obtained and concentrated. 

Isolation of bioactive compounds
The isolation of compounds was carried out on an open 
glass chromatographic column packed with 60-120 mesh 
silica gel. The DCM fraction, 5.48 g, was re-suspended 
and loaded on the chromatography column (75 cm × 3.5 
cm). The sample was eluted with n-hexane/ethyl acetate 
70%:30% to 100% ethyl acetate, followed by ethyl acetate/
methanol, 90%:10%; 80%:20%; 70%:30%; 50%:50%; 
30%:70%; and 0%:100%. A total of 64 fractions were 
obtained (approximately, 30 mL each), which were pooled 
into 5 (F1–F5) according to their retention factor (Rf) 
pattern (F254 silica gel 60 TLC plate, 70/20/10% n-hexane/
ethyl acetate/methanol). Fraction F4 was further purified 
by crystallisation to obtain a white amorphous powder. 
The substance contained a mixture of two compounds 
assigned as 1 (9.8 mg). The compound showed a retention 
factor (Rf) of 0.6 in ethyl acetate/methanol 9.5/0.5%. 
Compound 1 was visualised under an ultraviolet (UV) 
lamp (UVITEC, Cambridge). The developed TLC plate 
(Figure S1) was detected by being sprayed with conc. 
H2SO4, and then left in the oven at 110℃ for about 10 
min (Oven DHG-9053A, Ocean Med, England). 

Cytotoxic analysis
Cells and cell culture
Human Caco-2, HeLa, and MCF-7 cancer cell lines were 
originally obtained from the American Type Culture 
Collection (ATCC) or the European Collection of 
Authenticated Cell Cultures (ECACC). As previously 
described,17 the cells were cultured in DMEM 
supplemented with 10% Foetal Bovine Serum (FBS), 1% 
2 mM L-glutamine, and 1% penicillin-streptomycin-
amphotericin B solution. They were maintained in a 37 
°C incubator with a 5% CO2 humidified atmosphere. 
Cells were passaged approximately twice weekly. Before 
the treatment, cells were seeded into 96-well microplates 
and incubated for 24 hours. Cell visualization (at × 10 
magnification) was performed using an Olympus CKX41 
inverted microscope.
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Cell treatments and cell viability assessment with the MTT 
assay
Stock solutions were prepared in DMSO, and all further 
dilutions were made in full growth medium. The highest 
concentrations used contained no more than 0.1% DMSO, 
which was non-toxic to the cells. Each well containing 
approximately 7,500 cells, prepared as previously 
reported,17 was treated with the sample (concentrations: 
1, 10, 50, 100, and 200 µg/mL). Each experiment was 
performed in triplicate and repeated three independent 
times (n = 3). The effects on the viability of the three 
human cell lines of the isolated compounds were assessed 
using the in vitro MTT assay.19

Molecular docking study
Ligand, protein retrieval and preparation 
The ligands used in this study were the structures of 
stigmast-5,22-dien-3-O-β-D-glucoside and sitosterol-3-
O-β-D-glucoside isolated from the methanol root extract 
of O. subscorpioidea. Their structures were downloaded 
from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/). The 3D structures were prepared for docking 
using the UCSF Chimera tool (1.16).20 Gasteiger charges 
and hydrogen atoms were added.21 Energy minimisation 
of the structures was carried out at 100 steepest descent 
steps.

The 3D structures of the following proteins were retrieved 
from the Protein Data Bank (PDB) (https://www.rcsb.
org/).22 Alpha-beta tubulin complexed with taxol (PDB 
ID: 1JFF),23 alpha-beta tubulin complexed with colchicine 
(PDB ID: 1SA0),24 caspase-3 (PDB ID: 1GFW),25 human 
17 beta-hydroxysteroid dehydrogenase-1 (PDB ID: 
1FDW),26 phosphoinositide 3-kinase (PDB ID: 1E8Z),27 
poly (ADP-ribose) polymerase-1 (PDB ID: 5DS3),28 
bromodomain-containing protein 4 (PDB ID: 7JKW),29 
epidermal growth factor receptor tyrosine kinase domain 
(PDB ID: 1M17),30 human oestrogen receptor alpha (PDB 
ID: 3ERT),31 and polo-like kinase-1 (PDB ID: 3FC2).32 To 
prepare the proteins, they were individually uploaded to 
the workspace of Chimera. All ligands, small molecules, 
water, and other co-crystallised compounds were deleted. 
Hydrogen atoms were added to the proteins. In addition, 
partial charges were added by ANTECHAMBER. The 
structures were then minimised to 200 steepest descent 
steps at 10-minute intervals. The prepared proteins were 
saved in .pdb to be used for docking.33 

Docking 
A molecular docking study was carried out to obtain 
information about the various binding conformations 
and binding energies of the compounds when interacting 
with the selected proteins. A site-directed docking was 
performed for all proteins. First, they were uploaded to the 
GPU of the Python Prescription Virtual Screening Tool 
(PyRx). They were then made into macromolecules. The 
active site of each protein had been pre-determined as the 
residues within 5 Å region of the co-crystallised ligand in 

Chimera. The ligands were imported to the GPU of PyRx, 
converted to AutoDock ligand format (.pdbqt), and the 
grid box set, fitting the active site which was defined by 
the grid box coordinates as shown in Table 1. Docking 
was carried out with the AutoDock Vina of PyRx.34 
BIOVIA Discovery Studio Visualiser was used to analyse 
the protein-ligand interactions.21 

ADMET study
Drug-likeness means how much a compound’s properties 
resemble those of existing drugs. The physicochemical 
parameters and ADME properties of the isolated 
compounds were evaluated using a freely available web 
tool, SwissADME (http://www.swissadme.ch/).35 Some 
of the parameters obtained include molecular weight, 
lipophilicity, hydrogen bond acceptors and donors, 
topological polar surface area (TPSA), enzyme inhibition, 
and synthetic route accessibility. 

Statistical analysis
Each experiment was carried out three independent 
times (n = 3). Data is presented as mean of IC50 ± SEM 
(standard error of the mean). GraphPad Prism (9.4) was 
used to calculate the IC50. One-way ANOVA was used 
to determine the statistical significance of differences 
between means (P < 0.05 considered significant).

Results and Discussion
Cytotoxic effects of O. subscorpioidea fractions
Olax subscorpioidea is found in many countries across 
West and Central Africa and its traditional applications 
include its use to treat cancer, diabetes mellitus, 
neurodegenerative disorders, and swelling.12,13 An 
ethnobotanical study among people in Ogun State, Nigeria, 
discovered that a mixture containing O. subscorpioidea 
root, along with other plants including Alafia barteri leaf, 
Anthocleista djalonensis root, Calliandra portoricensis 
root, Clausena anisata stem bark, Macaranga barteri stem 
bark, Tephrosia vogelii stem bark, Triclisia subcordata 
leaf, Xylopia aethiopica, and potash, is used to treat breast 
cancer.15 A preliminary study of the cytotoxic activity of O. 
subscorpioidea revealed activity against MCF-7 and RD.18 
The methanol root extract was further fractionated into 
n-hexane, DCM, and aqueous media. The DCM fraction 
showed the highest activity against the two cell lines 
with percentage cell inhibition of 80.08% for MCF-7 and 
82.01% for RD. The activity was closely followed by that 
of the n-hexane fraction with percentage cell inhibition 
of 78.42% for MCF-7 and 79.98% for RD. The aqueous 
fraction showed lower activity, having cell inhibition of 
8.46% for MCF-7 and 40.87% for RD.18 The current study 
focused on isolating bioactive compounds from the DCM 
fraction and evaluating their cytotoxic effects against 
human cancer cell lines. 

Structure determination
The DCM fraction yielded a white amorphous powder, 

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.rcsb.org/
http://www.swissadme.ch/p
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9.8 mg (Compound 1). Extensive NMR experiments 
revealed that the isolated compound was a mixture of 
two known sterol glycosides. In the 13C NMR experiment, 
the signals at δC 101.05 and 101.27, and 121.66 and 
121.69 occurred as pairs each indicating a mixture of two 
similar compounds. The heteronuclear multiple bond 
correlation (HMBC) spectrum was used to verify the 
identity of the individual compounds in each mixture, 
which were identified as stigmasterol glucoside and 
β-sitosterol glucoside by detecting the distinct signals at 
positions C-22 and C-23.36 Using HMBC spectrum, the 
chemical shifts of stigmasterol glucoside at positions 
C-22 and C-23 were confirmed as 138.5 and 129.3 ppm, 
respectively, indicating the presence of an alkene group. 
In contrast, β-sitosterol glucoside showed chemical shift 
signals for C-22 and C-23 resonating at 33.8 and 25.9 
ppm, respectively, suggesting an alkyl group (Table S1). 
Homonuclear correlation spectroscopy (1H-1H COSY), 
heteronuclear single quantum correlation (HSQC), and 
HMBC spectra helped confirm all 1H and 13C assignments 
(Figures 1a and 1b, and Figures S2–S7). 

Stigmast-5,22-dien-3-O-β-D-glucoside (1a), white 
amorphous powder. IR: 3360 cm-1, broad (OH stretch), 
2910 cm-1 (CH stretch), and 1010 cm-1 (CO stretch). 1H 
NMR (DMSO, 600 MHz): δH 2.12, 2.35 (2H, C-1), 3.45 
(m, 1H, C-3), 1.79 (2H, C-4), 5.33 (t, 1H, C-6), 1.91 (2H, 
C-7), 1.43 (1H, C-8), 0.99 m (1H, C-14), 1.79 (2H, C-16), 
0.66 (s, 3H, C-18), 0.95 (s, 3H, C-19), 0.99 (d 6.48 Hz, 
3H, C-21), 5.15 (m, 1H, C-22), 5.02 (m, 1H, C-23), 1.50 
(1H, C-24), 1.34 (1H, C-25), 0.82 (3H, C-26), 0.78 (d 2.32 
Hz, 3H, C-27), 0.77 (3H, C-29), 4.20 (d, 7.84 Hz, C-1’). 
13C-DEPT-Q δC: 38.8 (C-1), 77.4 (C-3), 37.3 (C-4), 140.9 
(C-5), 121.7 (C-6), 31.8 (C-7), 55.8 (C-17), 12.3 (C-18), 
19.6 (C-19), 21.6 (C-21), 138.5 (C-22), 129.3 (C-23), 51.1 
(C-24), 31.9 (C-25), 21.4 (C-26), 19.3 (C-27), 12.6 (C-29), 
101.2 (C-1’) 73.9 (C-2’), 77.2 (C-3’), 70.5 (C-4’), 77.2 (C-
5’), 61.5 (C-6’).37-40 

Sitosterol-3-O-β-D-glucoside (1b), white amorphous 
powder. IR: 3360 cm-1, broad (OH stretch), 2910 cm-1 (CH 
stretch), and 1010 cm-1 (CO stretch). 1H NMR (DMSO, 
600 MHz): δH 3.45 m (1H, C-3), 5.33 (t, 1H, C-6), 1.91 
(2H, C-7), 0.99 m (1H, C-14), 1.38 (2H, C-15), 1.78 (2H, 
C-16), 1.13 (1H, C-17), 0.66 (s, 3H, C-18), 0.80 (s, 3H, 
C-19), 1.33 (1H, C-20), 0.95 (3H, C-21), 1.00, 1.29 (2H, 
C-22), 1.14 (2H, C-23), 0.91 (1H, C-24), 0.90 (d, 6.22 Hz 
C-27), 0.81 (3H, C-29), 4.20 (d, 7.84 Hz C-1’), 3.08 (1H, 
C-3’), 3.04 (1H, C-5’), 3.39, 3.63 (1H, C-6’). 13C-DEP-Q 

δC: 36.7 (C-1), 29.0 (C-2), 77.3 (C-3), 140.9 (C-5), 121.7 
(C-6), 50.1 (C-9), 36.7 (C-10), 21.1 (C-11), 37.3 (C-12), 
56.6 (C-14), 25.4 (C-15), 28.3 (C-16), 55.9 (C-17), 12.2 
(C-18), 20.2 (C-19), 36.0 (C-20), 19.4 (C-21), 33.8 (C-22), 
25.9 (C-23), 45.6 (C-24), 29.2 (C-25), 19.4 (C-26), 19.1 
(C-27), 23.1 (C-28), 12.3 (C-29), 101.1 (C-1’), 73.9 (C-2’), 
77.2 (C-3’), 70.5 (C-4’), 77.2 (C-5’), 61.5 (C-6’).38,41,42 

The occurrence of β-sitosterol and stigmasterol or 
their glycosides together in the same plant is common. 
Similarly, the isolation of the two compounds or their 
glycosides together as a mixture is also frequent. Kamal 
et al36 isolated a mixture of β-sitosterol and stigmasterol 
from Vitex pinnata L. Ekhuemelo et al43 isolated a 
mixture of sitosterol, stigmasterol and cycloeucalenol 
from Erythrophleum suaveolens (Guill. & Perr.) Brenan. 
Here are a few other plants from which a mixture of the 
compounds was reported: Baccaurea macrocarpa Miq. 
Mull. Arg,44 Cassia sieberiana DC.,45 Premna herbacea 
Roxb.,46 and Ricinus communis L.47 Elfita et al48 isolated 
a mixture of their glycosides from Garcinia griffithii T. 
Anderson. These compounds also exhibit a variety of 
biological activities.

Cytotoxic effects of the isolated compounds
The cytotoxic potencies of the isolated compounds, as 
indicated by the IC50 values, are presented in Table 2. 
Compound 1, a mixture of stigmast-5,22-dien-3-O-
β-D-glucoside (1a) and sitosterol-3-O-β-D-glucoside 
(1b), showed cytotoxicity against the HeLa and MCF-
7 cell lines. Its most potent cytotoxicity was against 
the HeLa cell line, with an IC50 value of 37.0 ± 4.51 µM, 
although it also exhibited mild cytotoxicity against the 
MCF-7 cell line, with an IC50 value of 137.07 ± 19.43 µg/
mL (Table 2). Ikpefan et al49 reported that stigmast-5,22-
dien-3-O-β-D-glucoside was sensitive to MCF-7 and 
NCI-H460 cell lines with GI50 values of 40.83 ± 0.1 and 
58.83 ± 11.2 µM, respectively, using the sulforhodamine 
B (SRB) cytotoxicity assay. Quradha et al42 reported 
that sitosterol-3-O-β-D-glucoside had moderate activity 
against the HeLa cell line, with a cell inhibition of 48%, 
and a weak effect on the 3T3 cell line (mouse fibroblast), 
with a cell inhibition of 39%. This compound isolated 
from the aerial part of Cynara cardunculus var. altilis was 
also shown to have an IC50 value of 53.6 µg/mL against 
the hepatocellular carcinoma (HepG2) cell line.50 A study 
investigating the effects of sitosterol-3-O-β-D-glucoside 
on HepG2 and SMMC-7721 cells, via the Wnt/β-catenin 

Table 1. Binding site coordinates of some protein targets

Dimensions 17βHDS1 (PDB ID: 1FDW) PARP-1 (PDB ID: 5DS3) EGFR (PDB ID: 1M17) αβ-TUBULIN (PDB ID:1SA0)

Centre_x (Å) 46.2939 – 1.9486 24.6136 117.8476

Centre_y (Å) 7.0436 37.6889 –0.3664 89.7445

Centre_z (Å) 42.6282 13.7477 25.3674 6.5756

Size_x (Å) 23.8829 23.1186 28.0573 19.6719

Size_y (Å) 20.8675 18.1855 18.3221 25.6549

Size_z (Å) 22.8567 26.5048 21.7736 20.9588
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signalling pathway, found that it inhibited cell migration 
and invasion in HepG2 cells through this signalling 
pathway.51 Another study revealed that sitosterol-3-O-
β-D-glucoside exhibited its cytotoxic effects through the 
induction of apoptosis and activation of caspase-3 and 
-9 in the hepatocellular (Huh7 and HepG2) cancer cell 
lines.52

Molecular docking study
Molecular docking is a crucial computational tool in 
predicting binding conformations and binding energies of 
small molecule drugs (ligands) to receptor proteins, which 
enables high-throughput virtual screening.53 In this study, 
ten cancer-related proteins were selected for the docking 
study. The compounds docked well with all the proteins. 
Stigmast-5,22-dien-3-O-β-D-glucoside consistently 
showed stronger interactions than sitosterol-3-O-β-D-
glucoside with some of the proteins. The best interactions, 

with the least negative binding energies, were observed 
with alpha-beta tubulin complexed with colchicine (PDB 
ID: 1SA0). Compounds 1a and 1b showed binding energy 
of –10.3 and –10.0 kcal/mol, respectively. For compound 
1a, this was followed by epidermal growth factor receptor 
tyrosine kinase domain (EGFR) (PDB ID: 1M17) and 
17β-hydroxysteroid dehydrogenase-1 (17β-HSD1) (PDB 
ID: 1FDW) with a binding energy of –9.3 kcal/mol. Poly 
(ADP-ribose) polymerase-1 (PARP-1) (PDB ID: 5DS3) 
had a binding energy of –9.2 kcal/mol for compound 1a. 
For compound 1b, EGFR ranked second with a binding 
energy of –9.3 kcal/mol, while PARP-1 had a binding 
energy of –9.2 kcal/mol (Table 3). The two compounds 
showed the least binding interactions with bromodomain-
containing protein 4 (BRD4) (PDB ID: 7JKW) and 
caspase-3 (PDB ID: 1GFW). 

The compounds show similar conformations at 
the colchicine-binding site of alpha-beta tubulin 
(Figures 3A and 4E). αβ-Tubulin heterodimers are 
microtubule proteins that are crucial for the mitotic 
phase of cell division. Classical inhibitors of the β-tubulin 
subunit act by promoting or disrupting microtubule 
assemblage during mitosis by binding to the colchicine-, 
vinca-, or taxol-binding sites.54 The isolated compounds 
form a bridge between the α- and β-subunits of tubulin. 
The compounds were orientated in such a way that the 

Figure 2. Structure of compound 1a and 1b

Table 2. Cytotoxic potencies (IC50) of compounds 1a and 1b from O. 
subscorpioidea against human cancer cell lines 

IC50 ± SEM (µg/mL)

Compounds HeLa MCF-7 Caco-2

1 37.0 ± 4.51 137.07 ± 19.43  > 200

Vincristine 1.42 ± 0.40* 0.54 ± 0.06* 1.33 ± 0.05*

* Activities expressed in µM.

1a

1b
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Table 3. Binding affinities of isolated compounds against ten selected protein targets

Ligands
PubChem 

ID

Binding affinities (kcal/mol)

1JFF 1GFW 1FDW 1E8Z 5DS3 7JKW 1M17 1SA0 3ERT 3FC2

1a 6602508 –9.0 –7.8 –9.3 –8.3 –9.2 –7.7 –9.3 –10.3 –8.2 –8.8

1b 12309057 –7.9 –7.7 –9.1 –7.7 –9.2 –7.4 –9.3 –10.0 –8.0 –8.8

Figure 3. Interacting residues of (A) Alpha-beta tubulin, (B) EGFR, (C) 17β-HSD1, and (D) PARP-1 with compound 1a. Green: Conventional hydrogen bonding. 
Lilac: Alkyl/pi-alkyl interaction. Blue: Carbon hydrogen bonding. Purple: Pi-sigma bonding. Light green: van der Waals forces

Figure 4. Interacting residues of (E) Alpha-beta tubulin, (F) EGFR, (G) 17β-HSD1, and (H) PARP-1 with compound 1b. Green: Conventional hydrogen bonding. 
Lilac: Alkyl/pi-alkyl interaction. Blue: Carbon hydrogen bonding. Purple: Pi-sigma bonding. Light green: van der Waals forces

A B

C D

E F

G H
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polar glycosidic tail pointed toward the α-chain, while the 
non-polar head formed hydrophobic interactions with 
the β-chain. The compounds were observed to stabilise 
at the colchicine-binding pocket with crucial amino acid 
residues such as threonine (THR) 179 and cysteine (CYS) 
241, the residues that have been implicated in the binding 
of colchicine-like compounds to the protein.54 Similarly, 
colchicine hydrogen bonds with the CYS241 residue of 
β-tubulin and shows hydrophobic interaction.55 

17β-HSD1 converts weakly active oestrone to a 
pharmacologically more active estrogen, 17β-oestradiol, in 
the breast tissue using nicotinamide adenine dinucleotide 
(NADH) or its phosphate (NADPH) as a cofactor. 
17β-oestradiol is crucial for the growth of breast cancer 
cells.56 The two compounds interacted with important 
17β-HSD1 residues involved in its catalytic functions, 
which include tyrosine (TYR) 155 and lysine (LYS) 159 
(Figures 3C and 4G).57 EGFR residues interacted with 
the compounds via alkyl, van der Waals, and hydrogen 
bonds (Figures 3B and 4F). The sugar moiety was used to 
interact with the protein via hydrogen bonding. In PARP-
1, compound 1a formed a π-sigma bond with the protein 
in addition to alkyl, π-alkyl, van der Waals, and hydrogen 
bondings (Figures 3D and 4H). Since most of the selected 
proteins are expressed in the tested cancer cell lines, it can 
be suggested that the in silico study supports the in vitro 
study.

Drug-likeness study
In 1997, Christopher Lipinski from Pfizer introduced the 
“Rule of 5.” It suggests that orally administered drugs are 
less likely to be absorbed or permeate well if they have 
a molecular weight exceeding 500 g/mol, more than 5 
hydrogen bond donors, more than 10 hydrogen bond 
acceptors, or a CLog P greater than 5.58 Although the 
“Rule of Five” is not sacrosanct because many blockbuster 
drugs in the clinic fail it, it has greatly helped in lead 
optimisation and drug design. In drug development, a 
drug candidate is assessed for its absorption, distribution, 
metabolism and elimination.35 Table 4 shows the 

physicochemical parameters and ADMET descriptors 
for the isolated compounds 1a and 1b as virtually 
estimated by the SwissADME software. The compounds 
have molecular weights greater than 500 g/mol, which 
violate the Rule of 5. However, other parameters (Log P, 
hydrogen bond acceptor and hydrogen bond donor) are 
within acceptable ranges. The compounds are also not 
inhibitors of metabolic enzymes. 

The bioavailability radar helps in the initial evaluation 
of how drug-like a molecule is, using the following 
physicochemical properties: Lipophilicity (LIPO), 
Flexibility (FLEX), Insaturation (INSATU), Insolubility 
(INSOLU), Polarity (POLAR), and Size (SIZE) (Figure 5). 
Lipophilicity is measured by Log P, which ranges from 
−0.7 to + 5.0. Size is assessed by molecular weight ( ≤ 500 g/
mol). Polarity is indicated by TPSA ( ≤ 140 Å²). Insolubility 
is represented by log S. Insaturation is evaluated based 
on the fraction of carbon atoms in sp³ hybridization. 
Flexibility is measured by the number of rotatable bonds 
( ≤ 9).59 The bioavailability radar in Figure 5 shows that 
the bioavailability rating of the two compounds was 
slightly within the suitable physicochemical space for oral 
bioavailability (www.swissadme.ch). 

Conclusion
Medicinal plants are a productive source of drugs, 
including anticancer agents. In this study, stigmast-
5,22-dien-3-O-β-D-glucoside and sitosterol-3-O-β-D-
glucoside were isolated from the methanol root extract 
of O. subscorpioidea. Their structures were established by 
various spectroscopic data analyses (FTIR (Figure S8), 1D 
& 2D NMR). The results of the MTT assay show that the 
compounds were cytotoxic against human cervical (HeLa) 
and breast (MCF-7) cancer cell lines, with IC50 values of 
37.0 ± 4.51 and 137.07 ± 19.43 µg/mL, respectively. The 
results of the docking analysis of the isolated compounds 
showed they had strong binding affinities for the 
colchicine-binding site of alpha-beta tubulin, epidermal 
growth factor receptor kinase, poly (ADP-ribose) 
polymerse-1, and 17β-hydroxysteroid dehydrogenase-1. 
To the best of our knowledge, this is the first report of 
the isolation of these compounds from O. subscorpioidea. 
These isolated compounds may, therefore, contribute to 
the cytotoxic effects of O. subscorpioidea.
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